File size: 659 Bytes
9311971
e373b8e
 
d00f8b0
fb1b355
e373b8e
d00f8b0
 
 
e373b8e
 
d00f8b0
 
 
e373b8e
d00f8b0
 
9311971
d00f8b0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import gradio as gr
from transformers import pipeline

# Load your QA model
qa_pipeline = pipeline('question-answering', model='MaawaKhalid/Extractive-QA-Bot')

# Define a function to handle the QA
def qa_function(context, question):
    result = qa_pipeline({'context': context, 'question': question})
    return result['answer']

# Create a Gradio interface
gr.Interface(
    fn=qa_function,
    inputs=[
        gr.components.Textbox(label="Context", placeholder="Enter some text to ask questions from"),
        gr.components.Textbox(label="Question", placeholder="Enter your question")
    ],
    outputs=gr.components.Textbox(label="Answer")
).launch()