File size: 3,894 Bytes
ddb4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8b4be
ddb4de0
 
 
 
 
 
 
 
b52e2c5
a3bf837
b4f4818
a3bf837
ddb4de0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa8b4be
b3b9c95
fa8b4be
 
ddb4de0
 
 
 
 
 
 
 
 
 
fa8b4be
 
 
 
 
469dc1d
fa8b4be
469dc1d
91dae63
469dc1d
ddb4de0
fa8b4be
ddb4de0
91dae63
ddb4de0
 
 
 
 
 
fa8b4be
ddb4de0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import gradio as gr
import numpy as np
import torch
import os
import re_matching
from tools.sentence import split_by_language, sentence_split
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import webbrowser
from config import config
from tools.translate import translate

from webui import reload_javascript

device = config.webui_config.device
if device == "mps":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

def generate_audio(
    slices,
    sdp_ratio,
    noise_scale,
    noise_scale_w,
    length_scale,
    speaker,
    language,
):
    audio_list = []
    silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
    with torch.no_grad():
        for piece in slices:
            audio = infer(
                piece,
                sdp_ratio=sdp_ratio,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
                sid=speaker,
                language=language,
                hps=hps,
                net_g=net_g,
                device=device,
            )
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
            audio_list.append(audio16bit)
            audio_list.append(silence)  # 将静音添加到列表中
    return audio_list

def speak_fn(
        text: str,
        speaker="TalkFlower_CNzh",
        sdp_ratio=0.2,      # SDP/DP混合比
        noise_scale=0.6,        # 感情
        noise_scale_w=0.6,      # 音素长度
        length_scale=0.9,       # 语速
        language="ZH"
    ):
    print(text)
    if len(text) > 100:
        gr.Warning("Too long! No more than 100 characters. 一口气不要超过 100 个字,憋死我了。")
        return gr.update()
    audio_list = []
    audio_list.extend(
        generate_audio(
            text.split("|"),
            sdp_ratio,
            noise_scale,
            noise_scale_w,
            length_scale,
            speaker,
            language,
        )
    )
    
    audio_concat = np.concatenate(audio_list)    
    return (hps.data.sampling_rate, audio_concat)


def init_fn():
    gr.Info("2023-11-23: 用的人多起来了,生成可能要等一会。买了更好的服务器看看效果怎么样。")
    gr.Info("2023-11-23: Only support Chinese now. Trying to train a mutilingual model.")

with open("./css/style.css", "r", encoding="utf-8") as f:
    customCSS = f.read()

with gr.Blocks(css=customCSS) as demo:
    # talkingFlowerModel = gr.HTML("""<div id="talking_flower_model">123</div>""")
    talkingFlowerPic = gr.HTML("""<img src="file=assets/flower-2x.webp" alt="TalkingFlowerPic">""", elem_id="talking_flower_pic")
    input_text = gr.Textbox(lines=1, label="Talking Flower will say:", elem_classes="wonder-card", elem_id="input_text")
    speak_button = gr.Button("Speak!", elem_id="comfirm_button", elem_classes="button wonder-card")
    audio_output = gr.Audio(label="输出音频", show_label=False, autoplay=True, elem_id="audio_output", elem_classes="wonder-card")
    
    demo.load(
        init_fn,
        inputs=[],
        outputs=[]
    )
    input_text.submit(
        speak_fn,
        inputs=[input_text],
        outputs=[audio_output],
    )
    speak_button.click(
        speak_fn,
        inputs=[input_text],
        outputs=[audio_output],
    )


if __name__ == "__main__":
    hps = utils.get_hparams_from_file(config.webui_config.config_path)
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(model_path=config.webui_config.model, version=version, device=device, hps=hps)
    reload_javascript()
    demo.queue().launch(
        allowed_paths=["./assets"],
        show_api=False,
        # server_name=server_name,
        # server_port=server_port,
        share=True,
        inbrowser=True,  # 禁止在docker下开启inbrowser
    )