File size: 5,263 Bytes
ddb4de0
 
 
 
 
 
 
 
 
 
 
 
8f472c2
ddb4de0
 
 
 
 
 
fa8b4be
ddb4de0
8f472c2
ddb4de0
 
 
 
 
8f472c2
 
 
ddb4de0
8f472c2
 
a3bf837
8f472c2
 
 
 
 
 
ddb4de0
8f472c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddb4de0
 
8f472c2
ddb4de0
 
fa8b4be
8f472c2
fa8b4be
 
8f472c2
ddb4de0
 
 
 
8f472c2
ddb4de0
 
 
 
 
fa8b4be
 
 
 
 
469dc1d
fa8b4be
8f472c2
 
469dc1d
ddb4de0
fa8b4be
8f472c2
 
ddb4de0
 
 
 
 
 
fa8b4be
ddb4de0
 
 
 
 
 
8f472c2
ddb4de0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import gradio as gr
import numpy as np
import torch
import os
import re_matching
from tools.sentence import split_by_language, sentence_split
import utils
from infer import infer, latest_version, get_net_g
import gradio as gr
import webbrowser
from config import config
from tools.translate import translate
from tools.webui import reload_javascript

device = config.webui_config.device
if device == "mps":
    os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"


def speak_fn(
        text: str,
        exceed_flag,
        speaker="TalkFlower_CNzh",
        sdp_ratio=0.2,      # SDP/DP混合比
        noise_scale=0.6,        # 感情
        noise_scale_w=0.6,      # 音素长度
        length_scale=0.9,       # 语速
        language="ZH",
        interval_between_para=0.2,      # 段间间隔
        interval_between_sent=1,        # 句间间隔
    ):
    while text.find("\n\n") != -1:
        text = text.replace("\n\n", "\n")
    if len(text) > 100:
        print(f"Too Long Text: {text}")
        gr.Warning("Too long! No more than 100 characters. 一口气不要超过 100 个字,憋坏我了。")
        if exceed_flag:
            return gr.update(value="./assets/audios/nomorethan100.wav", autoplay=True), False
        else:
            return gr.update(value="./assets/audios/overlength.wav", autoplay=True), True
    audio_list = []
    if len(text) > 42:
        print(f"Long Text: {text}")
        para_list = re_matching.cut_para(text)
        for p in para_list:
            audio_list_sent = []
            sent_list = re_matching.cut_sent(p)
            for s in sent_list:
                audio = infer(
                    s,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language=language,
                    hps=hps,
                    net_g=net_g,
                    device=device,
                )
                audio_list_sent.append(audio)
                silence = np.zeros((int)(44100 * interval_between_sent))
                audio_list_sent.append(silence)
            if (interval_between_para - interval_between_sent) > 0:
                silence = np.zeros(
                    (int)(44100 * (interval_between_para - interval_between_sent))
                )
                audio_list_sent.append(silence)
            audio16bit = gr.processing_utils.convert_to_16_bit_wav(
                np.concatenate(audio_list_sent)
            )  # 对完整句子做音量归一
            audio_list.append(audio16bit)
    else:
        print(f"Short Text: {text}")
        silence = np.zeros(hps.data.sampling_rate // 2, dtype=np.int16)
        with torch.no_grad():
            for piece in text.split("|"):
                audio = infer(
                    piece,
                    sdp_ratio=sdp_ratio,
                    noise_scale=noise_scale,
                    noise_scale_w=noise_scale_w,
                    length_scale=length_scale,
                    sid=speaker,
                    language=language,
                    hps=hps,
                    net_g=net_g,
                    device=device,
                )
                audio16bit = gr.processing_utils.convert_to_16_bit_wav(audio)
                audio_list.append(audio16bit)
                audio_list.append(silence)  # 将静音添加到列表中
    
    audio_concat = np.concatenate(audio_list)    
    return (hps.data.sampling_rate, audio_concat), exceed_flag


def init_fn():
    gr.Info("2023-11-24: 优化长句生成效果;更新了一些小彩蛋。")
    gr.Info("2023-11-23: Only support Chinese now. Trying to train a mutilingual model.")


with open("./css/style.css", "r", encoding="utf-8") as f:
    customCSS = f.read()

with gr.Blocks(css=customCSS) as demo:
    exceed_flag = gr.State(value=False)
    talkingFlowerPic = gr.HTML("""<img src="file=assets/flower-2x.webp" alt="TalkingFlowerPic">""", elem_id="talking_flower_pic")
    input_text = gr.Textbox(lines=1, label="Talking Flower will say:", elem_classes="wonder-card", elem_id="input_text")
    speak_button = gr.Button("Speak!", elem_id="comfirm_button", elem_classes="button wonder-card")
    audio_output = gr.Audio(label="输出音频", show_label=False, autoplay=True, elem_id="audio_output", elem_classes="wonder-card")
    
    demo.load(
        init_fn,
        inputs=[],
        outputs=[]
    )
    input_text.submit(
        speak_fn,
        inputs=[input_text, exceed_flag],
        outputs=[audio_output, exceed_flag],
    )
    speak_button.click(
        speak_fn,
        inputs=[input_text, exceed_flag],
        outputs=[audio_output, exceed_flag],
    )


if __name__ == "__main__":
    hps = utils.get_hparams_from_file(config.webui_config.config_path)
    version = hps.version if hasattr(hps, "version") else latest_version
    net_g = get_net_g(model_path=config.webui_config.model, version=version, device=device, hps=hps)
    reload_javascript()
    demo.queue().launch(
        allowed_paths=["./assets"],
        show_api=False,
        # server_name=server_name,
        # server_port=server_port,
        inbrowser=True,
    )