mertkarabacak commited on
Commit
fc152b8
·
1 Parent(s): 4e03e15

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -36,7 +36,7 @@ from datasets import load_dataset
36
  data = load_dataset("mertkarabacak/NSQIP-CDA", data_files="cda_imputed.csv", use_auth_token = HF_TOKEN)
37
 
38
  data = pd.DataFrame(data['train'])
39
- variables = ['SEX', 'TRANST', 'AGE', 'SURGSPEC', 'HEIGHT', 'WEIGHT', 'DIABETES', 'SMOKE', 'DYSPNEA', 'FNSTATUS2', 'VENTILAT', 'HXCOPD', 'ASCITES', 'HXCHF', 'HYPERMED', 'RENAFAIL', 'DIALYSIS', 'DISCANCR', 'WNDINF', 'STEROID', 'WTLOSS', 'BLEEDDIS', 'TRANSFUS', 'PRSODM', 'PRBUN', 'PRCREAT', 'PRWBC', 'PRHCT', 'PRPLATE', 'ASACLAS', 'READMISSION1', 'BMI', 'RACE', 'LEVELS', 'ADVERSE_OUTCOME']
40
  data = data[variables]
41
 
42
  data['SEX'] = data['SEX'].replace(['male'], 'Male')
@@ -131,19 +131,19 @@ def y1_predict_xgb(*args):
131
  df_xgb = pd.DataFrame([args], columns=x.columns)
132
  df_xgb = df_xgb.astype({col: "category" for col in categorical_columns})
133
  pos_pred = y1_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
134
- return {"Prolonged LOS": float(pos_pred[0]), "Not Prolonged LOS": 1 - float(pos_pred[0])}
135
 
136
  def y1_predict_lgb(*args):
137
  df = pd.DataFrame([args], columns=data.columns)
138
  df = df.astype({col: "category" for col in categorical_columns})
139
  pos_pred = y1_model_lgb.predict(df)
140
- return {"Prolonged LOS": float(pos_pred[0]), "Not Prolonged LOS": 1 - float(pos_pred[0])}
141
 
142
  def y1_predict_cb(*args):
143
  df_cb = pd.DataFrame([args], columns=x.columns)
144
  df_cb = df_cb.astype({col: "category" for col in categorical_columns})
145
  pos_pred = y1_model_cb.predict(Pool(df_cb, cat_features = categorical_columns), prediction_type='Probability')
146
- return {"Prolonged LOS": float(pos_pred[0][1]), "Not Prolonged LOS": float(pos_pred[0][0])}
147
 
148
  def y1_predict_rf(*args):
149
  df = pd.DataFrame([args], columns=x_rf.columns)
@@ -151,7 +151,7 @@ def y1_predict_rf(*args):
151
  d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
152
  df = df.astype(d)
153
  pos_pred = y1_model_rf.predict_proba(df)
154
- return {"Prolonged LOS": float(pos_pred[0][1]), "Not Prolonged LOS": float(pos_pred[0][0])}
155
 
156
 
157
  #Define interpret for y1/AE.
 
36
  data = load_dataset("mertkarabacak/NSQIP-CDA", data_files="cda_imputed.csv", use_auth_token = HF_TOKEN)
37
 
38
  data = pd.DataFrame(data['train'])
39
+ variables = ['SEX', 'TRANST', 'AGE', 'SURGSPEC', 'HEIGHT', 'WEIGHT', 'DIABETES', 'SMOKE', 'DYSPNEA', 'FNSTATUS2', 'VENTILAT', 'HXCOPD', 'ASCITES', 'HXCHF', 'HYPERMED', 'RENAFAIL', 'DIALYSIS', 'DISCANCR', 'WNDINF', 'STEROID', 'WTLOSS', 'BLEEDDIS', 'TRANSFUS', 'PRSODM', 'PRBUN', 'PRCREAT', 'PRWBC', 'PRHCT', 'PRPLATE', 'ASACLAS', 'BMI', 'RACE', 'LEVELS', 'ADVERSE_OUTCOME']
40
  data = data[variables]
41
 
42
  data['SEX'] = data['SEX'].replace(['male'], 'Male')
 
131
  df_xgb = pd.DataFrame([args], columns=x.columns)
132
  df_xgb = df_xgb.astype({col: "category" for col in categorical_columns})
133
  pos_pred = y1_model_xgb.predict(xgb.DMatrix(df_xgb, enable_categorical=True))
134
+ return {"Adverse Outcomes": float(pos_pred[0]), "No Adverse Outcomes": 1 - float(pos_pred[0])}
135
 
136
  def y1_predict_lgb(*args):
137
  df = pd.DataFrame([args], columns=data.columns)
138
  df = df.astype({col: "category" for col in categorical_columns})
139
  pos_pred = y1_model_lgb.predict(df)
140
+ return {"Adverse Outcomes": float(pos_pred[0]), "No Adverse Outcomes": 1 - float(pos_pred[0])}
141
 
142
  def y1_predict_cb(*args):
143
  df_cb = pd.DataFrame([args], columns=x.columns)
144
  df_cb = df_cb.astype({col: "category" for col in categorical_columns})
145
  pos_pred = y1_model_cb.predict(Pool(df_cb, cat_features = categorical_columns), prediction_type='Probability')
146
+ return {"Adverse Outcomes": float(pos_pred[0]), "No Adverse Outcomes": 1 - float(pos_pred[0])}
147
 
148
  def y1_predict_rf(*args):
149
  df = pd.DataFrame([args], columns=x_rf.columns)
 
151
  d = dict.fromkeys(df.select_dtypes(np.int64).columns, np.int32)
152
  df = df.astype(d)
153
  pos_pred = y1_model_rf.predict_proba(df)
154
+ return {"Adverse Outcomes": float(pos_pred[0]), "No Adverse Outcomes": 1 - float(pos_pred[0])}
155
 
156
 
157
  #Define interpret for y1/AE.