Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -110,7 +110,7 @@ y1_model = y1_model.fit(x1, y1, overwrite_warning=True)
|
|
110 |
y1_calib_model = CalibratedClassifierCV(y1_model, method='isotonic', cv='prefit')
|
111 |
y1_calib_model = y1_calib_model.fit(x1_valid, y1_valid)
|
112 |
|
113 |
-
y1_explainer = shap.Explainer(
|
114 |
|
115 |
|
116 |
from tabpfn import TabPFNClassifier
|
@@ -122,7 +122,7 @@ y2_model = y2_model.fit(x2, y2, overwrite_warning=True)
|
|
122 |
y2_calib_model = CalibratedClassifierCV(y2_model, method='isotonic', cv='prefit')
|
123 |
y2_calib_model = y2_calib_model.fit(x2_valid, y2_valid)
|
124 |
|
125 |
-
y2_explainer = shap.Explainer(
|
126 |
|
127 |
|
128 |
from tabpfn import TabPFNClassifier
|
@@ -134,7 +134,7 @@ y3_model = y3_model.fit(x3, y3, overwrite_warning=True)
|
|
134 |
y3_calib_model = CalibratedClassifierCV(y3_model, method='isotonic', cv='prefit')
|
135 |
y3_calib_model = y3_calib_model.fit(x3_valid, y3_valid)
|
136 |
|
137 |
-
y3_explainer = shap.Explainer(
|
138 |
|
139 |
|
140 |
from tabpfn import TabPFNClassifier
|
@@ -146,7 +146,7 @@ y4_model = y4_model.fit(x4, y4, overwrite_warning=True)
|
|
146 |
y4_calib_model = CalibratedClassifierCV(y4_model, method='isotonic', cv='prefit')
|
147 |
y4_calib_model = y4_calib_model.fit(x4_valid, y4_valid)
|
148 |
|
149 |
-
y4_explainer = shap.Explainer(
|
150 |
|
151 |
|
152 |
output_y1 = (
|
|
|
110 |
y1_calib_model = CalibratedClassifierCV(y1_model, method='isotonic', cv='prefit')
|
111 |
y1_calib_model = y1_calib_model.fit(x1_valid, y1_valid)
|
112 |
|
113 |
+
y1_explainer = shap.Explainer(y1_calib_model.predict, x1)
|
114 |
|
115 |
|
116 |
from tabpfn import TabPFNClassifier
|
|
|
122 |
y2_calib_model = CalibratedClassifierCV(y2_model, method='isotonic', cv='prefit')
|
123 |
y2_calib_model = y2_calib_model.fit(x2_valid, y2_valid)
|
124 |
|
125 |
+
y2_explainer = shap.Explainer(y2_calib_model.predict, x2)
|
126 |
|
127 |
|
128 |
from tabpfn import TabPFNClassifier
|
|
|
134 |
y3_calib_model = CalibratedClassifierCV(y3_model, method='isotonic', cv='prefit')
|
135 |
y3_calib_model = y3_calib_model.fit(x3_valid, y3_valid)
|
136 |
|
137 |
+
y3_explainer = shap.Explainer(y3_calib_model.predict, x3)
|
138 |
|
139 |
|
140 |
from tabpfn import TabPFNClassifier
|
|
|
146 |
y4_calib_model = CalibratedClassifierCV(y4_model, method='isotonic', cv='prefit')
|
147 |
y4_calib_model = y4_calib_model.fit(x4_valid, y4_valid)
|
148 |
|
149 |
+
y4_explainer = shap.Explainer(y4_calib_model.predict, x4)
|
150 |
|
151 |
|
152 |
output_y1 = (
|