Spaces:
Runtime error
Runtime error
Commit
·
61f44f7
1
Parent(s):
dfb5088
Upload app.py
Browse files
app.py
CHANGED
@@ -21,24 +21,24 @@ from datasets import load_dataset
|
|
21 |
|
22 |
#Read data training data.
|
23 |
|
24 |
-
x1 = pd.read_csv("
|
25 |
|
26 |
-
x2 = pd.read_csv("
|
27 |
|
28 |
-
x3 = pd.read_csv("
|
29 |
|
30 |
-
x4 = pd.read_csv("
|
31 |
|
32 |
|
33 |
#Read validation data.
|
34 |
|
35 |
-
x1_valid = pd.read_csv("
|
36 |
|
37 |
-
x2_valid = pd.read_csv("
|
38 |
|
39 |
-
x3_valid = pd.read_csv("
|
40 |
|
41 |
-
x4_valid = pd.read_csv("
|
42 |
|
43 |
|
44 |
#Define feature names.
|
@@ -86,10 +86,10 @@ y4_valid = x4_valid.pop('OUTCOME')
|
|
86 |
|
87 |
#Assign hyperparameters.
|
88 |
|
89 |
-
y1_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1':
|
90 |
-
y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1':
|
91 |
-
y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1':
|
92 |
-
y4_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1':
|
93 |
|
94 |
#Training models.
|
95 |
|
@@ -140,7 +140,7 @@ y4_calib_model = y4_calib_model.fit(y4_calib_probs, y4_valid)
|
|
140 |
output_y1 = (
|
141 |
"""
|
142 |
<br/>
|
143 |
-
<center>The probability of
|
144 |
<br/>
|
145 |
<center><h1>{:.2f}%</h1></center>
|
146 |
"""
|
@@ -149,7 +149,7 @@ output_y1 = (
|
|
149 |
output_y2 = (
|
150 |
"""
|
151 |
<br/>
|
152 |
-
<center>The probability of
|
153 |
<br/>
|
154 |
<center><h1>{:.2f}%</h1></center>
|
155 |
"""
|
@@ -158,7 +158,7 @@ output_y2 = (
|
|
158 |
output_y3 = (
|
159 |
"""
|
160 |
<br/>
|
161 |
-
<center>The probability of
|
162 |
<br/>
|
163 |
<center><h1>{:.2f}%</h1></center>
|
164 |
"""
|
@@ -167,7 +167,7 @@ output_y3 = (
|
|
167 |
output_y4 = (
|
168 |
"""
|
169 |
<br/>
|
170 |
-
<center>The probability of
|
171 |
<br/>
|
172 |
<center><h1>{:.2f}%</h1></center>
|
173 |
"""
|
@@ -297,12 +297,12 @@ def y4_interpret(*args):
|
|
297 |
return fig
|
298 |
|
299 |
|
300 |
-
with gr.Blocks(title = "NCDB-
|
301 |
|
302 |
gr.Markdown(
|
303 |
"""
|
304 |
<br/>
|
305 |
-
<center><h1>
|
306 |
<center><h2>Prediction Tool</h2></center>
|
307 |
<center><i>The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.</i><center>
|
308 |
"""
|
@@ -324,44 +324,44 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
324 |
<th>Brier Score</th>
|
325 |
</tr>
|
326 |
<tr>
|
327 |
-
<td>
|
328 |
<td>LightGBM</td>
|
329 |
-
<td>0.
|
330 |
-
<td>0.
|
331 |
-
<td>0.
|
332 |
-
<td>0.
|
333 |
-
<td>0.
|
334 |
-
<td>0.
|
335 |
</tr>
|
336 |
<tr>
|
337 |
-
<td>
|
338 |
<td>LightGBM</td>
|
339 |
-
<td>0.
|
340 |
-
<td>0.
|
341 |
-
<td>0.
|
342 |
-
<td>0.
|
343 |
-
<td>0.
|
344 |
-
<td>0.
|
345 |
</tr>
|
346 |
<tr>
|
347 |
-
<td>
|
348 |
<td>LightGBM</td>
|
349 |
-
<td>0.
|
350 |
-
<td>0.
|
351 |
-
<td>0.
|
352 |
-
<td>0.
|
353 |
-
<td>0.
|
354 |
-
<td>0.
|
355 |
</tr>
|
356 |
<tr>
|
357 |
-
<td>
|
358 |
<td>LightGBM</td>
|
359 |
-
<td>0.
|
360 |
-
<td>0.
|
361 |
-
<td>0.
|
362 |
-
<td>0.
|
363 |
-
<td>0.
|
364 |
-
<td>0.
|
365 |
</tr>
|
366 |
</table>
|
367 |
</div>
|
@@ -387,6 +387,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
387 |
Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['South Atlantic', 'East North Central', 'Middle Atlantic', 'East North Central', 'Middle Atlantic', 'Pacific', 'West South Central', 'West North Central', 'East South Central', 'New England', 'Mountain', 'Unknown or Other'], type = 'index', value = 'South Atlantic')
|
388 |
|
389 |
CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '2', 'Greater than 3'], type = 'index', value = '0')
|
|
|
390 |
Karnofsky_Performance_Scale = gr.Dropdown(label = "Karnofsky Performance Scale", choices = ['KPS 0-20', 'KPS 21-40', 'KPS 41-60', 'KPS 61-80', 'KPS 81-100', 'Unknown'], type = 'index', value = 'KPS 81-100')
|
391 |
|
392 |
Laterality = gr.Dropdown(label = "Laterality", choices = ['Right', 'Left', 'Bilateral', 'Midline', 'Unknown'], type = 'index', value = 'Right')
|
@@ -399,10 +400,6 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
399 |
|
400 |
Tumor_Size = gr.Dropdown(label = "Tumor Size", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
|
401 |
|
402 |
-
Histology = gr.Dropdown(label = "Histology", choices = ['Astrocytoma', 'Oligodendroglioma', 'Oligoastrocytoma'], type = 'index', value = 'Astrocytoma')
|
403 |
-
|
404 |
-
Grade = gr.Dropdown(label = "Grade", choices = ['Grade II', 'Grade III'], type = 'index', value = 'Grade II')
|
405 |
-
|
406 |
CoDeletion_1p19q = gr.Dropdown(label = "1p19q Co-Deletion", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
|
407 |
|
408 |
MGMT_Methylation = gr.Dropdown(label = "MGMT Methylation", choices = ['Unmethylated', 'Methylated', 'Unknown'], type = 'index', value = 'Unmethylated')
|
@@ -425,7 +422,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
425 |
|
426 |
gr.Markdown(
|
427 |
"""
|
428 |
-
<center> <h2>
|
429 |
<br/>
|
430 |
<center> This model uses the LightGBM algorithm.</center>
|
431 |
<br/>
|
@@ -469,7 +466,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
469 |
with gr.Box():
|
470 |
gr.Markdown(
|
471 |
"""
|
472 |
-
<center> <h2>
|
473 |
<br/>
|
474 |
<center> This model uses the LightGBM algorithm.</center>
|
475 |
<br/>
|
@@ -514,7 +511,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
514 |
|
515 |
gr.Markdown(
|
516 |
"""
|
517 |
-
<center> <h2>
|
518 |
<br/>
|
519 |
<center> This model uses the LightGBM algorithm.</center>
|
520 |
<br/>
|
@@ -559,7 +556,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
559 |
|
560 |
gr.Markdown(
|
561 |
"""
|
562 |
-
<center> <h2>
|
563 |
<br/>
|
564 |
<center> This model uses the LightGBM algorithm.</center>
|
565 |
<br/>
|
@@ -603,49 +600,49 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
|
|
603 |
|
604 |
y1_predict_btn.click(
|
605 |
y1_predict,
|
606 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
607 |
outputs = [label1]
|
608 |
)
|
609 |
|
610 |
y2_predict_btn.click(
|
611 |
y2_predict,
|
612 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
613 |
outputs = [label2]
|
614 |
)
|
615 |
|
616 |
y3_predict_btn.click(
|
617 |
y3_predict,
|
618 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
619 |
outputs = [label3]
|
620 |
)
|
621 |
|
622 |
y4_predict_btn.click(
|
623 |
y4_predict,
|
624 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
625 |
outputs = [label4]
|
626 |
)
|
627 |
|
628 |
y1_interpret_btn.click(
|
629 |
y1_interpret,
|
630 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
631 |
outputs = [plot1],
|
632 |
)
|
633 |
|
634 |
y2_interpret_btn.click(
|
635 |
y2_interpret,
|
636 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
637 |
outputs = [plot2],
|
638 |
)
|
639 |
|
640 |
y3_interpret_btn.click(
|
641 |
y3_interpret,
|
642 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
643 |
outputs = [plot3],
|
644 |
)
|
645 |
|
646 |
y4_interpret_btn.click(
|
647 |
y4_interpret,
|
648 |
-
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,
|
649 |
outputs = [plot4],
|
650 |
)
|
651 |
|
|
|
21 |
|
22 |
#Read data training data.
|
23 |
|
24 |
+
x1 = pd.read_csv("m6_data_train.csv", index_col = 0, low_memory = False)
|
25 |
|
26 |
+
x2 = pd.read_csv("m12_data_train.csv", index_col = 0, low_memory = False)
|
27 |
|
28 |
+
x3 = pd.read_csv("m24_data_train.csv", index_col = 0, low_memory = False)
|
29 |
|
30 |
+
x4 = pd.read_csv("m36_data_train.csv", index_col = 0, low_memory = False)
|
31 |
|
32 |
|
33 |
#Read validation data.
|
34 |
|
35 |
+
x1_valid = pd.read_csv("m6_data_valid.csv", index_col = 0, low_memory = False)
|
36 |
|
37 |
+
x2_valid = pd.read_csv("m12_data_valid.csv", index_col = 0, low_memory = False)
|
38 |
|
39 |
+
x3_valid = pd.read_csv("m24_data_valid.csv", index_col = 0, low_memory = False)
|
40 |
|
41 |
+
x4_valid = pd.read_csv("m36_data_valid.csv", index_col = 0, low_memory = False)
|
42 |
|
43 |
|
44 |
#Define feature names.
|
|
|
86 |
|
87 |
#Assign hyperparameters.
|
88 |
|
89 |
+
y1_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 2.874728678068222e-05, 'lambda_l2': 0.002100238688192627, 'num_leaves': 39, 'feature_fraction': 0.4504130718946593, 'bagging_fraction': 0.8916461477863318, 'bagging_freq': 7, 'min_child_samples': 45, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
90 |
+
y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.0002837317278662907, 'lambda_l2': 5.412618023120056e-06, 'num_leaves': 78, 'feature_fraction': 0.4044321534682025, 'bagging_fraction': 0.747678020066352, 'bagging_freq': 6, 'min_child_samples': 44, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
91 |
+
y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.00016354134178989566, 'lambda_l2': 0.005110516449291205, 'num_leaves': 4, 'feature_fraction': 0.525789668995701, 'bagging_fraction': 0.4203858842031528, 'bagging_freq': 3, 'min_child_samples': 66, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
92 |
+
y4_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.00014329772210712767, 'lambda_l2': 0.001638738946438707, 'num_leaves': 2, 'feature_fraction': 0.565882308738563, 'bagging_fraction': 0.47701769327658605, 'bagging_freq': 5, 'min_child_samples': 59, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
|
93 |
|
94 |
#Training models.
|
95 |
|
|
|
140 |
output_y1 = (
|
141 |
"""
|
142 |
<br/>
|
143 |
+
<center>The probability of 6-month survival:</center>
|
144 |
<br/>
|
145 |
<center><h1>{:.2f}%</h1></center>
|
146 |
"""
|
|
|
149 |
output_y2 = (
|
150 |
"""
|
151 |
<br/>
|
152 |
+
<center>The probability of 12-month survival:</center>
|
153 |
<br/>
|
154 |
<center><h1>{:.2f}%</h1></center>
|
155 |
"""
|
|
|
158 |
output_y3 = (
|
159 |
"""
|
160 |
<br/>
|
161 |
+
<center>The probability of 24-month survival:</center>
|
162 |
<br/>
|
163 |
<center><h1>{:.2f}%</h1></center>
|
164 |
"""
|
|
|
167 |
output_y4 = (
|
168 |
"""
|
169 |
<br/>
|
170 |
+
<center>The probability of 36-month survival:</center>
|
171 |
<br/>
|
172 |
<center><h1>{:.2f}%</h1></center>
|
173 |
"""
|
|
|
297 |
return fig
|
298 |
|
299 |
|
300 |
+
with gr.Blocks(title = "NCDB-GBM") as demo:
|
301 |
|
302 |
gr.Markdown(
|
303 |
"""
|
304 |
<br/>
|
305 |
+
<center><h1>GBM Survival Outcomes</h1></center>
|
306 |
<center><h2>Prediction Tool</h2></center>
|
307 |
<center><i>The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.</i><center>
|
308 |
"""
|
|
|
324 |
<th>Brier Score</th>
|
325 |
</tr>
|
326 |
<tr>
|
327 |
+
<td>6-Month Mortality</td>
|
328 |
<td>LightGBM</td>
|
329 |
+
<td>0.694 (0.686 - 0.702)</td>
|
330 |
+
<td>0.810 (0.803 - 0.817)</td>
|
331 |
+
<td>0.772 (0.765 - 0.779)</td>
|
332 |
+
<td>0.719 (0.711 - 0.727)</td>
|
333 |
+
<td>0.831 (0.824 - 0.838)</td>
|
334 |
+
<td>0.152 (0.146 - 0.158)</td>
|
335 |
</tr>
|
336 |
<tr>
|
337 |
+
<td>12-Month Mortality</td>
|
338 |
<td>LightGBM</td>
|
339 |
+
<td>0.700 (0.692 - 0.708)</td>
|
340 |
+
<td>0.742 (0.735 - 0.749)</td>
|
341 |
+
<td>0.720 (0.712 - 0.728)</td>
|
342 |
+
<td>0.821 (0.815 - 0.827)</td>
|
343 |
+
<td>0.808 (0.792 - 0.807)</td>
|
344 |
+
<td>0.183 (0.176 - 0.190)</td>
|
345 |
</tr>
|
346 |
<tr>
|
347 |
+
<td>24-Month Mortality</td>
|
348 |
<td>LightGBM</td>
|
349 |
+
<td>0.742 (0.735 - 0.749)</td>
|
350 |
+
<td>0.555 (0.547 - 0.563)</td>
|
351 |
+
<td>0.702 (0.694 - 0.710)</td>
|
352 |
+
<td>0.897 (0.892 - 0.902)</td>
|
353 |
+
<td>0.725 (0.706 - 0.728)</td>
|
354 |
+
<td>0.153 (0.147 - 0.159)</td>
|
355 |
</tr>
|
356 |
<tr>
|
357 |
+
<td>36-Month Mortality</td>
|
358 |
<td>LightGBM</td>
|
359 |
+
<td>0.705 (0.697 - 0.713)</td>
|
360 |
+
<td>0.576 (0.568 - 0.584)</td>
|
361 |
+
<td>0.689 (0.681 - 0.697)</td>
|
362 |
+
<td>0.937 (0.933 - 0.941)</td>
|
363 |
+
<td>0.707 (0.687 - 0.713)</td>
|
364 |
+
<td>0.103 (0.098 - 0.108)</td>
|
365 |
</tr>
|
366 |
</table>
|
367 |
</div>
|
|
|
387 |
Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['South Atlantic', 'East North Central', 'Middle Atlantic', 'East North Central', 'Middle Atlantic', 'Pacific', 'West South Central', 'West North Central', 'East South Central', 'New England', 'Mountain', 'Unknown or Other'], type = 'index', value = 'South Atlantic')
|
388 |
|
389 |
CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '2', 'Greater than 3'], type = 'index', value = '0')
|
390 |
+
|
391 |
Karnofsky_Performance_Scale = gr.Dropdown(label = "Karnofsky Performance Scale", choices = ['KPS 0-20', 'KPS 21-40', 'KPS 41-60', 'KPS 61-80', 'KPS 81-100', 'Unknown'], type = 'index', value = 'KPS 81-100')
|
392 |
|
393 |
Laterality = gr.Dropdown(label = "Laterality", choices = ['Right', 'Left', 'Bilateral', 'Midline', 'Unknown'], type = 'index', value = 'Right')
|
|
|
400 |
|
401 |
Tumor_Size = gr.Dropdown(label = "Tumor Size", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
|
402 |
|
|
|
|
|
|
|
|
|
403 |
CoDeletion_1p19q = gr.Dropdown(label = "1p19q Co-Deletion", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
|
404 |
|
405 |
MGMT_Methylation = gr.Dropdown(label = "MGMT Methylation", choices = ['Unmethylated', 'Methylated', 'Unknown'], type = 'index', value = 'Unmethylated')
|
|
|
422 |
|
423 |
gr.Markdown(
|
424 |
"""
|
425 |
+
<center> <h2>6-Month Survival</h2> </center>
|
426 |
<br/>
|
427 |
<center> This model uses the LightGBM algorithm.</center>
|
428 |
<br/>
|
|
|
466 |
with gr.Box():
|
467 |
gr.Markdown(
|
468 |
"""
|
469 |
+
<center> <h2>12-Month Survival</h2> </center>
|
470 |
<br/>
|
471 |
<center> This model uses the LightGBM algorithm.</center>
|
472 |
<br/>
|
|
|
511 |
|
512 |
gr.Markdown(
|
513 |
"""
|
514 |
+
<center> <h2>24-Month Survival</h2> </center>
|
515 |
<br/>
|
516 |
<center> This model uses the LightGBM algorithm.</center>
|
517 |
<br/>
|
|
|
556 |
|
557 |
gr.Markdown(
|
558 |
"""
|
559 |
+
<center> <h2>36-Month Survival</h2> </center>
|
560 |
<br/>
|
561 |
<center> This model uses the LightGBM algorithm.</center>
|
562 |
<br/>
|
|
|
600 |
|
601 |
y1_predict_btn.click(
|
602 |
y1_predict,
|
603 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_Biopsy,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
604 |
outputs = [label1]
|
605 |
)
|
606 |
|
607 |
y2_predict_btn.click(
|
608 |
y2_predict,
|
609 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
610 |
outputs = [label2]
|
611 |
)
|
612 |
|
613 |
y3_predict_btn.click(
|
614 |
y3_predict,
|
615 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
616 |
outputs = [label3]
|
617 |
)
|
618 |
|
619 |
y4_predict_btn.click(
|
620 |
y4_predict,
|
621 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
622 |
outputs = [label4]
|
623 |
)
|
624 |
|
625 |
y1_interpret_btn.click(
|
626 |
y1_interpret,
|
627 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
628 |
outputs = [plot1],
|
629 |
)
|
630 |
|
631 |
y2_interpret_btn.click(
|
632 |
y2_interpret,
|
633 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
634 |
outputs = [plot2],
|
635 |
)
|
636 |
|
637 |
y3_interpret_btn.click(
|
638 |
y3_interpret,
|
639 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
640 |
outputs = [plot3],
|
641 |
)
|
642 |
|
643 |
y4_interpret_btn.click(
|
644 |
y4_interpret,
|
645 |
+
inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
|
646 |
outputs = [plot4],
|
647 |
)
|
648 |
|