mertkarabacak commited on
Commit
61f44f7
·
1 Parent(s): dfb5088

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +59 -62
app.py CHANGED
@@ -21,24 +21,24 @@ from datasets import load_dataset
21
 
22
  #Read data training data.
23
 
24
- x1 = pd.read_csv("m12_data_train.csv", index_col = 0, low_memory = False)
25
 
26
- x2 = pd.read_csv("m24_data_train.csv", index_col = 0, low_memory = False)
27
 
28
- x3 = pd.read_csv("m36_data_train.csv", index_col = 0, low_memory = False)
29
 
30
- x4 = pd.read_csv("m60_data_train.csv", index_col = 0, low_memory = False)
31
 
32
 
33
  #Read validation data.
34
 
35
- x1_valid = pd.read_csv("m12_data_valid.csv", index_col = 0, low_memory = False)
36
 
37
- x2_valid = pd.read_csv("m24_data_valid.csv", index_col = 0, low_memory = False)
38
 
39
- x3_valid = pd.read_csv("m36_data_valid.csv", index_col = 0, low_memory = False)
40
 
41
- x4_valid = pd.read_csv("m60_data_valid.csv", index_col = 0, low_memory = False)
42
 
43
 
44
  #Define feature names.
@@ -86,10 +86,10 @@ y4_valid = x4_valid.pop('OUTCOME')
86
 
87
  #Assign hyperparameters.
88
 
89
- y1_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 9.636570621064845e-06, 'lambda_l2': 0.003747385566704826, 'num_leaves': 8, 'feature_fraction': 0.5227250594804498, 'bagging_fraction': 0.44654591882113764, 'bagging_freq': 4, 'min_child_samples': 72, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
90
- y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 8.065104217173182, 'lambda_l2': 0.009368546720767723, 'num_leaves': 15, 'feature_fraction': 0.4640347984930871, 'bagging_fraction': 0.4385618748071607, 'bagging_freq': 3, 'min_child_samples': 66, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
91
- y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 1.2748078853140657e-05, 'lambda_l2': 0.6573192301848148, 'num_leaves': 39, 'feature_fraction': 0.7143554798223156, 'bagging_fraction': 0.5791644571313095, 'bagging_freq': 7, 'min_child_samples': 50, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
92
- y4_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 7.088664776651091e-06, 'lambda_l2': 4.1646943899743127e-08, 'num_leaves': 36, 'feature_fraction': 0.436937199531357, 'bagging_fraction': 0.8226045360995117, 'bagging_freq': 4, 'min_child_samples': 68, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
93
 
94
  #Training models.
95
 
@@ -140,7 +140,7 @@ y4_calib_model = y4_calib_model.fit(y4_calib_probs, y4_valid)
140
  output_y1 = (
141
  """
142
  <br/>
143
- <center>The probability of 12-month survival:</center>
144
  <br/>
145
  <center><h1>{:.2f}%</h1></center>
146
  """
@@ -149,7 +149,7 @@ output_y1 = (
149
  output_y2 = (
150
  """
151
  <br/>
152
- <center>The probability of 24-month survival:</center>
153
  <br/>
154
  <center><h1>{:.2f}%</h1></center>
155
  """
@@ -158,7 +158,7 @@ output_y2 = (
158
  output_y3 = (
159
  """
160
  <br/>
161
- <center>The probability of 36-month survival:</center>
162
  <br/>
163
  <center><h1>{:.2f}%</h1></center>
164
  """
@@ -167,7 +167,7 @@ output_y3 = (
167
  output_y4 = (
168
  """
169
  <br/>
170
- <center>The probability of 60-month survival:</center>
171
  <br/>
172
  <center><h1>{:.2f}%</h1></center>
173
  """
@@ -297,12 +297,12 @@ def y4_interpret(*args):
297
  return fig
298
 
299
 
300
- with gr.Blocks(title = "NCDB-LGG") as demo:
301
 
302
  gr.Markdown(
303
  """
304
  <br/>
305
- <center><h1>LGG Survival Outcomes</h1></center>
306
  <center><h2>Prediction Tool</h2></center>
307
  <center><i>The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.</i><center>
308
  """
@@ -324,44 +324,44 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
324
  <th>Brier Score</th>
325
  </tr>
326
  <tr>
327
- <td>12-Month Mortality</td>
328
  <td>LightGBM</td>
329
- <td>0.758 (0.745 - 0.771)</td>
330
- <td>0.836 (0.825 - 0.847)</td>
331
- <td>0.821 (0.810 - 0.832)</td>
332
- <td>0.649 (0.635 - 0.663)</td>
333
- <td>0.889 (0.865 - 0.890)</td>
334
- <td>0.101 (0.092 - 0.110)</td>
335
  </tr>
336
  <tr>
337
- <td>24-Month Mortality</td>
338
  <td>LightGBM</td>
339
- <td>0.771 (0.758 - 0.784)</td>
340
- <td>0.844 (0.833 - 0.855)</td>
341
- <td>0.822 (0.811 - 0.833)</td>
342
- <td>0.783 (0.771 - 0.795)</td>
343
- <td>0.892 (0.873 - 0.894)</td>
344
- <td>0.123 (0.113 - 0.133)</td>
345
  </tr>
346
  <tr>
347
- <td>36-Month Mortality</td>
348
  <td>LightGBM</td>
349
- <td>0.771 (0.758 - 0.784)</td>
350
- <td>0.825 (0.813 - 0.837)</td>
351
- <td>0.803 (0.791 - 0.815)</td>
352
- <td>0.834 (0.823 - 0.845)</td>
353
- <td>0.884 (0.865 - 0.886)</td>
354
- <td>0.139 (0.128 - 0.150)</td>
355
  </tr>
356
  <tr>
357
- <td>60-Month Mortality</td>
358
  <td>LightGBM</td>
359
- <td>0.789 (0.775 - 0.803)</td>
360
- <td>0.819 (0.806 - 0.832)</td>
361
- <td>0.802 (0.789 - 0.815)</td>
362
- <td>0.905 (0.895 - 0.915)</td>
363
- <td>0.870 (0.864 - 0.887)</td>
364
- <td>0.142 (0.130 - 0.154)</td>
365
  </tr>
366
  </table>
367
  </div>
@@ -387,6 +387,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
387
  Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['South Atlantic', 'East North Central', 'Middle Atlantic', 'East North Central', 'Middle Atlantic', 'Pacific', 'West South Central', 'West North Central', 'East South Central', 'New England', 'Mountain', 'Unknown or Other'], type = 'index', value = 'South Atlantic')
388
 
389
  CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '2', 'Greater than 3'], type = 'index', value = '0')
 
390
  Karnofsky_Performance_Scale = gr.Dropdown(label = "Karnofsky Performance Scale", choices = ['KPS 0-20', 'KPS 21-40', 'KPS 41-60', 'KPS 61-80', 'KPS 81-100', 'Unknown'], type = 'index', value = 'KPS 81-100')
391
 
392
  Laterality = gr.Dropdown(label = "Laterality", choices = ['Right', 'Left', 'Bilateral', 'Midline', 'Unknown'], type = 'index', value = 'Right')
@@ -399,10 +400,6 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
399
 
400
  Tumor_Size = gr.Dropdown(label = "Tumor Size", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
401
 
402
- Histology = gr.Dropdown(label = "Histology", choices = ['Astrocytoma', 'Oligodendroglioma', 'Oligoastrocytoma'], type = 'index', value = 'Astrocytoma')
403
-
404
- Grade = gr.Dropdown(label = "Grade", choices = ['Grade II', 'Grade III'], type = 'index', value = 'Grade II')
405
-
406
  CoDeletion_1p19q = gr.Dropdown(label = "1p19q Co-Deletion", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
407
 
408
  MGMT_Methylation = gr.Dropdown(label = "MGMT Methylation", choices = ['Unmethylated', 'Methylated', 'Unknown'], type = 'index', value = 'Unmethylated')
@@ -425,7 +422,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
425
 
426
  gr.Markdown(
427
  """
428
- <center> <h2>12-Month Survival</h2> </center>
429
  <br/>
430
  <center> This model uses the LightGBM algorithm.</center>
431
  <br/>
@@ -469,7 +466,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
469
  with gr.Box():
470
  gr.Markdown(
471
  """
472
- <center> <h2>24-Month Survival</h2> </center>
473
  <br/>
474
  <center> This model uses the LightGBM algorithm.</center>
475
  <br/>
@@ -514,7 +511,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
514
 
515
  gr.Markdown(
516
  """
517
- <center> <h2>36-Month Survival</h2> </center>
518
  <br/>
519
  <center> This model uses the LightGBM algorithm.</center>
520
  <br/>
@@ -559,7 +556,7 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
559
 
560
  gr.Markdown(
561
  """
562
- <center> <h2>60-Month Survival</h2> </center>
563
  <br/>
564
  <center> This model uses the LightGBM algorithm.</center>
565
  <br/>
@@ -603,49 +600,49 @@ with gr.Blocks(title = "NCDB-LGG") as demo:
603
 
604
  y1_predict_btn.click(
605
  y1_predict,
606
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
607
  outputs = [label1]
608
  )
609
 
610
  y2_predict_btn.click(
611
  y2_predict,
612
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
613
  outputs = [label2]
614
  )
615
 
616
  y3_predict_btn.click(
617
  y3_predict,
618
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
619
  outputs = [label3]
620
  )
621
 
622
  y4_predict_btn.click(
623
  y4_predict,
624
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
625
  outputs = [label4]
626
  )
627
 
628
  y1_interpret_btn.click(
629
  y1_interpret,
630
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
631
  outputs = [plot1],
632
  )
633
 
634
  y2_interpret_btn.click(
635
  y2_interpret,
636
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
637
  outputs = [plot2],
638
  )
639
 
640
  y3_interpret_btn.click(
641
  y3_interpret,
642
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
643
  outputs = [plot3],
644
  )
645
 
646
  y4_interpret_btn.click(
647
  y4_interpret,
648
- inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_Score,Histology,Tumor_Localization,Laterality,Diagnostic_Biopsy,Grade,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
649
  outputs = [plot4],
650
  )
651
 
 
21
 
22
  #Read data training data.
23
 
24
+ x1 = pd.read_csv("m6_data_train.csv", index_col = 0, low_memory = False)
25
 
26
+ x2 = pd.read_csv("m12_data_train.csv", index_col = 0, low_memory = False)
27
 
28
+ x3 = pd.read_csv("m24_data_train.csv", index_col = 0, low_memory = False)
29
 
30
+ x4 = pd.read_csv("m36_data_train.csv", index_col = 0, low_memory = False)
31
 
32
 
33
  #Read validation data.
34
 
35
+ x1_valid = pd.read_csv("m6_data_valid.csv", index_col = 0, low_memory = False)
36
 
37
+ x2_valid = pd.read_csv("m12_data_valid.csv", index_col = 0, low_memory = False)
38
 
39
+ x3_valid = pd.read_csv("m24_data_valid.csv", index_col = 0, low_memory = False)
40
 
41
+ x4_valid = pd.read_csv("m36_data_valid.csv", index_col = 0, low_memory = False)
42
 
43
 
44
  #Define feature names.
 
86
 
87
  #Assign hyperparameters.
88
 
89
+ y1_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 2.874728678068222e-05, 'lambda_l2': 0.002100238688192627, 'num_leaves': 39, 'feature_fraction': 0.4504130718946593, 'bagging_fraction': 0.8916461477863318, 'bagging_freq': 7, 'min_child_samples': 45, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
90
+ y2_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.0002837317278662907, 'lambda_l2': 5.412618023120056e-06, 'num_leaves': 78, 'feature_fraction': 0.4044321534682025, 'bagging_fraction': 0.747678020066352, 'bagging_freq': 6, 'min_child_samples': 44, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
91
+ y3_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.00016354134178989566, 'lambda_l2': 0.005110516449291205, 'num_leaves': 4, 'feature_fraction': 0.525789668995701, 'bagging_fraction': 0.4203858842031528, 'bagging_freq': 3, 'min_child_samples': 66, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
92
+ y4_params = {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.00014329772210712767, 'lambda_l2': 0.001638738946438707, 'num_leaves': 2, 'feature_fraction': 0.565882308738563, 'bagging_fraction': 0.47701769327658605, 'bagging_freq': 5, 'min_child_samples': 59, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
93
 
94
  #Training models.
95
 
 
140
  output_y1 = (
141
  """
142
  <br/>
143
+ <center>The probability of 6-month survival:</center>
144
  <br/>
145
  <center><h1>{:.2f}%</h1></center>
146
  """
 
149
  output_y2 = (
150
  """
151
  <br/>
152
+ <center>The probability of 12-month survival:</center>
153
  <br/>
154
  <center><h1>{:.2f}%</h1></center>
155
  """
 
158
  output_y3 = (
159
  """
160
  <br/>
161
+ <center>The probability of 24-month survival:</center>
162
  <br/>
163
  <center><h1>{:.2f}%</h1></center>
164
  """
 
167
  output_y4 = (
168
  """
169
  <br/>
170
+ <center>The probability of 36-month survival:</center>
171
  <br/>
172
  <center><h1>{:.2f}%</h1></center>
173
  """
 
297
  return fig
298
 
299
 
300
+ with gr.Blocks(title = "NCDB-GBM") as demo:
301
 
302
  gr.Markdown(
303
  """
304
  <br/>
305
+ <center><h1>GBM Survival Outcomes</h1></center>
306
  <center><h2>Prediction Tool</h2></center>
307
  <center><i>The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.</i><center>
308
  """
 
324
  <th>Brier Score</th>
325
  </tr>
326
  <tr>
327
+ <td>6-Month Mortality</td>
328
  <td>LightGBM</td>
329
+ <td>0.694 (0.686 - 0.702)</td>
330
+ <td>0.810 (0.803 - 0.817)</td>
331
+ <td>0.772 (0.765 - 0.779)</td>
332
+ <td>0.719 (0.711 - 0.727)</td>
333
+ <td>0.831 (0.824 - 0.838)</td>
334
+ <td>0.152 (0.146 - 0.158)</td>
335
  </tr>
336
  <tr>
337
+ <td>12-Month Mortality</td>
338
  <td>LightGBM</td>
339
+ <td>0.700 (0.692 - 0.708)</td>
340
+ <td>0.742 (0.735 - 0.749)</td>
341
+ <td>0.720 (0.712 - 0.728)</td>
342
+ <td>0.821 (0.815 - 0.827)</td>
343
+ <td>0.808 (0.792 - 0.807)</td>
344
+ <td>0.183 (0.176 - 0.190)</td>
345
  </tr>
346
  <tr>
347
+ <td>24-Month Mortality</td>
348
  <td>LightGBM</td>
349
+ <td>0.742 (0.735 - 0.749)</td>
350
+ <td>0.555 (0.547 - 0.563)</td>
351
+ <td>0.702 (0.694 - 0.710)</td>
352
+ <td>0.897 (0.892 - 0.902)</td>
353
+ <td>0.725 (0.706 - 0.728)</td>
354
+ <td>0.153 (0.147 - 0.159)</td>
355
  </tr>
356
  <tr>
357
+ <td>36-Month Mortality</td>
358
  <td>LightGBM</td>
359
+ <td>0.705 (0.697 - 0.713)</td>
360
+ <td>0.576 (0.568 - 0.584)</td>
361
+ <td>0.689 (0.681 - 0.697)</td>
362
+ <td>0.937 (0.933 - 0.941)</td>
363
+ <td>0.707 (0.687 - 0.713)</td>
364
+ <td>0.103 (0.098 - 0.108)</td>
365
  </tr>
366
  </table>
367
  </div>
 
387
  Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['South Atlantic', 'East North Central', 'Middle Atlantic', 'East North Central', 'Middle Atlantic', 'Pacific', 'West South Central', 'West North Central', 'East South Central', 'New England', 'Mountain', 'Unknown or Other'], type = 'index', value = 'South Atlantic')
388
 
389
  CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '2', 'Greater than 3'], type = 'index', value = '0')
390
+
391
  Karnofsky_Performance_Scale = gr.Dropdown(label = "Karnofsky Performance Scale", choices = ['KPS 0-20', 'KPS 21-40', 'KPS 41-60', 'KPS 61-80', 'KPS 81-100', 'Unknown'], type = 'index', value = 'KPS 81-100')
392
 
393
  Laterality = gr.Dropdown(label = "Laterality", choices = ['Right', 'Left', 'Bilateral', 'Midline', 'Unknown'], type = 'index', value = 'Right')
 
400
 
401
  Tumor_Size = gr.Dropdown(label = "Tumor Size", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
402
 
 
 
 
 
403
  CoDeletion_1p19q = gr.Dropdown(label = "1p19q Co-Deletion", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
404
 
405
  MGMT_Methylation = gr.Dropdown(label = "MGMT Methylation", choices = ['Unmethylated', 'Methylated', 'Unknown'], type = 'index', value = 'Unmethylated')
 
422
 
423
  gr.Markdown(
424
  """
425
+ <center> <h2>6-Month Survival</h2> </center>
426
  <br/>
427
  <center> This model uses the LightGBM algorithm.</center>
428
  <br/>
 
466
  with gr.Box():
467
  gr.Markdown(
468
  """
469
+ <center> <h2>12-Month Survival</h2> </center>
470
  <br/>
471
  <center> This model uses the LightGBM algorithm.</center>
472
  <br/>
 
511
 
512
  gr.Markdown(
513
  """
514
+ <center> <h2>24-Month Survival</h2> </center>
515
  <br/>
516
  <center> This model uses the LightGBM algorithm.</center>
517
  <br/>
 
556
 
557
  gr.Markdown(
558
  """
559
+ <center> <h2>36-Month Survival</h2> </center>
560
  <br/>
561
  <center> This model uses the LightGBM algorithm.</center>
562
  <br/>
 
600
 
601
  y1_predict_btn.click(
602
  y1_predict,
603
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_Biopsy,Ki67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
604
  outputs = [label1]
605
  )
606
 
607
  y2_predict_btn.click(
608
  y2_predict,
609
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
610
  outputs = [label2]
611
  )
612
 
613
  y3_predict_btn.click(
614
  y3_predict,
615
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
616
  outputs = [label3]
617
  )
618
 
619
  y4_predict_btn.click(
620
  y4_predict,
621
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
622
  outputs = [label4]
623
  )
624
 
625
  y1_interpret_btn.click(
626
  y1_interpret,
627
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
628
  outputs = [plot1],
629
  )
630
 
631
  y2_interpret_btn.click(
632
  y2_interpret,
633
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
634
  outputs = [plot2],
635
  )
636
 
637
  y3_interpret_btn.click(
638
  y3_interpret,
639
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
640
  outputs = [plot3],
641
  )
642
 
643
  y4_interpret_btn.click(
644
  y4_interpret,
645
+ inputs = [Facility_Type,Facility_Location,Age,Sex,Race,Hispanic_Ethnicity,Primary_Payor,CharlsonDeyo_ScoreTumor_Localization,Laterality,Diagnostic_BiopsyKi67_Labeling_Index,Karnofsky_Performance_Scale,MGMT_Methylation,Focality,Tumor_Size,Chemotherapy,Immunotherapy,CoDeletion_1p19q,Resective_Surgery,Extent_of_Resection,Radiation_Treatment],
646
  outputs = [plot4],
647
  )
648