Spaces:
Runtime error
Runtime error
Commit
·
28dff12
1
Parent(s):
218d1bb
Upload app.py
Browse files
app.py
CHANGED
@@ -21,41 +21,22 @@ from datasets import load_dataset
|
|
21 |
|
22 |
#Read data training data.
|
23 |
|
24 |
-
x1 = load_dataset("mertkarabacak/NCDB-GBM", data_files="
|
25 |
x1 = pd.DataFrame(x1['train'])
|
26 |
x1 = x1.iloc[:, 1:]
|
27 |
|
28 |
-
x2 = load_dataset("mertkarabacak/NCDB-GBM", data_files="
|
29 |
x2 = pd.DataFrame(x2['train'])
|
30 |
x2 = x2.iloc[:, 1:]
|
31 |
|
32 |
-
x3 = load_dataset("mertkarabacak/NCDB-GBM", data_files="
|
33 |
x3 = pd.DataFrame(x3['train'])
|
34 |
x3 = x3.iloc[:, 1:]
|
35 |
|
36 |
-
x4 = load_dataset("mertkarabacak/NCDB-GBM", data_files="
|
37 |
x4 = pd.DataFrame(x4['train'])
|
38 |
x4 = x4.iloc[:, 1:]
|
39 |
|
40 |
-
#Read validation data.
|
41 |
-
|
42 |
-
x1_valid = load_dataset("mertkarabacak/NCDB-GBM", data_files="6m_data_valid.csv", use_auth_token = HF_TOKEN)
|
43 |
-
x1_valid = pd.DataFrame(x1_valid['train'])
|
44 |
-
x1_valid = x1_valid.iloc[:, 1:]
|
45 |
-
|
46 |
-
x2_valid = load_dataset("mertkarabacak/NCDB-GBM", data_files="12m_data_valid.csv", use_auth_token = HF_TOKEN)
|
47 |
-
x2_valid = pd.DataFrame(x2_valid['train'])
|
48 |
-
x2_valid = x2_valid.iloc[:, 1:]
|
49 |
-
|
50 |
-
x3_valid = load_dataset("mertkarabacak/NCDB-GBM", data_files="18m_data_valid.csv", use_auth_token = HF_TOKEN)
|
51 |
-
x3_valid = pd.DataFrame(x3_valid['train'])
|
52 |
-
x3_valid = x3_valid.iloc[:, 1:]
|
53 |
-
|
54 |
-
x4_valid = load_dataset("mertkarabacak/NCDB-GBM", data_files="24m_data_valid.csv", use_auth_token = HF_TOKEN)
|
55 |
-
x4_valid = pd.DataFrame(x4_valid['train'])
|
56 |
-
x4_valid = x4_valid.iloc[:, 1:]
|
57 |
-
|
58 |
-
|
59 |
#Define feature names.
|
60 |
f1_names = list(x1.columns)
|
61 |
f1_names = [f1.replace('__', ' - ') for f1 in f1_names]
|
@@ -95,7 +76,7 @@ tabpfn = TabPFNClassifier(device='cuda', N_ensemble_configurations=1)
|
|
95 |
y1_model = tabpfn
|
96 |
y1_model = y1_model.fit(x1, y1, overwrite_warning=True)
|
97 |
|
98 |
-
y1_calib_model = CalibratedClassifierCV(y1_model, method='
|
99 |
y1_calib_model = y1_calib_model.fit(x1, y1)
|
100 |
|
101 |
y1_explainer = shap.Explainer(y1_model.predict, x1)
|
@@ -107,7 +88,7 @@ tabpfn = TabPFNClassifier(device='cuda', N_ensemble_configurations=1)
|
|
107 |
y2_model = tabpfn
|
108 |
y2_model = y2_model.fit(x2, y2, overwrite_warning=True)
|
109 |
|
110 |
-
y2_calib_model = CalibratedClassifierCV(y2_model, method='
|
111 |
y2_calib_model = y2_calib_model.fit(x2, y2)
|
112 |
|
113 |
y2_explainer = shap.Explainer(y2_model.predict, x2)
|
@@ -409,7 +390,7 @@ with gr.Blocks(title = "NCDB-Meningioma") as demo:
|
|
409 |
"""
|
410 |
<center> <h2>6-Month Survival</h2> </center>
|
411 |
<br/>
|
412 |
-
<center> This model uses the
|
413 |
<br/>
|
414 |
"""
|
415 |
)
|
@@ -453,7 +434,7 @@ with gr.Blocks(title = "NCDB-Meningioma") as demo:
|
|
453 |
"""
|
454 |
<center> <h2>12-Month Survival</h2> </center>
|
455 |
<br/>
|
456 |
-
<center> This model uses the
|
457 |
<br/>
|
458 |
"""
|
459 |
)
|
|
|
21 |
|
22 |
#Read data training data.
|
23 |
|
24 |
+
x1 = load_dataset("mertkarabacak/NCDB-GBM", data_files="6m_data_resampled.csv", use_auth_token = HF_TOKEN)
|
25 |
x1 = pd.DataFrame(x1['train'])
|
26 |
x1 = x1.iloc[:, 1:]
|
27 |
|
28 |
+
x2 = load_dataset("mertkarabacak/NCDB-GBM", data_files="12m_data_resampled.csv", use_auth_token = HF_TOKEN)
|
29 |
x2 = pd.DataFrame(x2['train'])
|
30 |
x2 = x2.iloc[:, 1:]
|
31 |
|
32 |
+
x3 = load_dataset("mertkarabacak/NCDB-GBM", data_files="18m_data_resampled.csv", use_auth_token = HF_TOKEN)
|
33 |
x3 = pd.DataFrame(x3['train'])
|
34 |
x3 = x3.iloc[:, 1:]
|
35 |
|
36 |
+
x4 = load_dataset("mertkarabacak/NCDB-GBM", data_files="24m_data_resampled.csv", use_auth_token = HF_TOKEN)
|
37 |
x4 = pd.DataFrame(x4['train'])
|
38 |
x4 = x4.iloc[:, 1:]
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
#Define feature names.
|
41 |
f1_names = list(x1.columns)
|
42 |
f1_names = [f1.replace('__', ' - ') for f1 in f1_names]
|
|
|
76 |
y1_model = tabpfn
|
77 |
y1_model = y1_model.fit(x1, y1, overwrite_warning=True)
|
78 |
|
79 |
+
y1_calib_model = CalibratedClassifierCV(y1_model, method='isotonic', cv='prefit')
|
80 |
y1_calib_model = y1_calib_model.fit(x1, y1)
|
81 |
|
82 |
y1_explainer = shap.Explainer(y1_model.predict, x1)
|
|
|
88 |
y2_model = tabpfn
|
89 |
y2_model = y2_model.fit(x2, y2, overwrite_warning=True)
|
90 |
|
91 |
+
y2_calib_model = CalibratedClassifierCV(y2_model, method='isotonic', cv='prefit')
|
92 |
y2_calib_model = y2_calib_model.fit(x2, y2)
|
93 |
|
94 |
y2_explainer = shap.Explainer(y2_model.predict, x2)
|
|
|
390 |
"""
|
391 |
<center> <h2>6-Month Survival</h2> </center>
|
392 |
<br/>
|
393 |
+
<center> This model uses the TabPFN algorithm.</center>
|
394 |
<br/>
|
395 |
"""
|
396 |
)
|
|
|
434 |
"""
|
435 |
<center> <h2>12-Month Survival</h2> </center>
|
436 |
<br/>
|
437 |
+
<center> This model uses the TabPFN algorithm.</center>
|
438 |
<br/>
|
439 |
"""
|
440 |
)
|