File size: 22,572 Bytes
35e001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1b8b5d
4b20078
dd01a24
4b20078
35e001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b58fc8
35e001b
6b58fc8
35e001b
6b58fc8
35e001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6c613
35e001b
 
 
 
 
db6c613
35e001b
 
 
 
 
db6c613
35e001b
 
 
 
 
db6c613
35e001b
 
 
 
 
db6c613
35e001b
 
 
 
 
db6c613
35e001b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
import os
HF_TOKEN = os.getenv("HF_TOKEN")

import numpy as np
import pandas as pd
import sklearn
import sklearn.metrics
from math import sqrt
from scipy import stats as st
from matplotlib import pyplot as plt

from sklearn.linear_model import LogisticRegression

import shap
import gradio as gr
import random
import re
import textwrap
from datasets import load_dataset


#Read data training data.

x1 = pd.read_csv("36m_data_train.csv", index_col = 0, low_memory = False)

x2 = pd.read_csv("60m_data_train.csv", index_col = 0, low_memory = False)

x3 = pd.read_csv("120m_data_train.csv", index_col = 0, low_memory = False)


#Read validation data.

x1_valid = pd.read_csv("36m_data_valid.csv", index_col = 0, low_memory = False)

x2_valid = pd.read_csv("60m_data_valid.csv", index_col = 0, low_memory = False)

x3_valid = pd.read_csv("120m_data_valid.csv", index_col = 0, low_memory = False)


#Define feature names.
f1_names = list(x1.columns)
f1_names = [f1.replace('__', ' - ') for f1 in f1_names]
f1_names = [f1.replace('_', ' ') for f1 in f1_names]

f2_names = list(x2.columns)
f2_names = [f2.replace('__', ' - ') for f2 in f2_names]
f2_names = [f2.replace('_', ' ') for f2 in f2_names]

f3_names = list(x3.columns)
f3_names = [f3.replace('__', ' - ') for f3 in f3_names]
f3_names = [f3.replace('_', ' ') for f3 in f3_names]


#Prepare training data for the outcome 1.
y1 = x1.pop('OUTCOME')

#Prepare validation data for the outcome 1.
y1_valid = x1_valid.pop('OUTCOME')

#Prepare training data for the outcome 2.
y2 = x2.pop('OUTCOME')

#Prepare validation data for the outcome 2.
y2_valid = x2_valid.pop('OUTCOME')

#Prepare training data for the outcome 3.
y3 = x3.pop('OUTCOME')

#Prepare validation data for the outcome 3.
y3_valid = x3_valid.pop('OUTCOME')


#Assign hyperparameters.

y1_params =  {'criterion': 'entropy', 'max_depth': 4, 'n_estimators': 1400, 'min_samples_leaf': 3, 'min_samples_split': 10, 'random_state': 31}
y2_params =  {'objective': 'binary', 'boosting_type': 'gbdt', 'lambda_l1': 0.6726024444744665, 'lambda_l2': 3.946412314107168e-08, 'num_leaves': 180, 'feature_fraction': 0.6838613576310666, 'bagging_fraction': 0.43284935253254003, 'bagging_freq': 5, 'min_child_samples': 83, 'metric': 'binary_logloss', 'verbosity': -1, 'random_state': 31}
y3_params =  {'objective': 'Logloss', 'colsample_bylevel': 0.08960988134854374, 'depth': 5, 'boosting_type': 'Plain', 'bootstrap_type': 'Bernoulli', 'subsample': 0.15476628999955983, 'random_seed': 31}


#Training models.

from sklearn.ensemble import RandomForestClassifier
rf = RandomForestClassifier(**y1_params)
y1_model = rf

y1_model = y1_model.fit(x1, y1)
y1_explainer = shap.Explainer(y1_model.predict, x1)
y1_calib_probs = y1_model.predict_proba(x1_valid)
y1_calib_model = LogisticRegression()
y1_calib_model = y1_calib_model.fit(y1_calib_probs, y1_valid)


from lightgbm import LGBMClassifier
lgb = LGBMClassifier(**y2_params)
y2_model = lgb

y2_model = y2_model.fit(x2, y2)
y2_explainer = shap.Explainer(y2_model.predict, x2)
y2_calib_probs = y2_model.predict_proba(x2_valid)
y2_calib_model = LogisticRegression()
y2_calib_model = y2_calib_model.fit(y2_calib_probs, y2_valid)


from catboost import CatBoostClassifier
cb = CatBoostClassifier(**y3_params)
y3_model = cb

y3_model = y3_model.fit(x3, y3)
y3_explainer = shap.Explainer(y3_model.predict, x3)
y3_calib_probs = y3_model.predict_proba(x3_valid)
y3_calib_model = LogisticRegression()
y3_calib_model = y3_calib_model.fit(y3_calib_probs, y3_valid)


output_y1 = (
    """          
        <br/>
        <center>The probability of 3-year survival:</center>
        <br/>
        <center><h1>{:.2f}%</h1></center>
"""
)

output_y2 = (
    """          
        <br/>        
        <center>The probability of 5-year survival:</center>
        <br/>        
        <center><h1>{:.2f}%</h1></center>
"""
)

output_y3 = (
    """          
        <br/>        
        <center>The probability of 10-year survival:</center>
        <br/>        
        <center><h1>{:.2f}%</h1></center>
"""
)


#Define predict for y1.
def y1_predict(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    pos_pred = y1_model.predict_proba(df1)
    pos_pred = y1_calib_model.predict_proba(pos_pred)
    prob = pos_pred[0][1]
    prob = 1-prob
    output = output_y1.format(prob * 100)
    return output

#Define predict for y2.
def y2_predict(*args):
    df2 = pd.DataFrame([args], columns=x2.columns)
    pos_pred = y2_model.predict_proba(df2)
    pos_pred = y2_calib_model.predict_proba(pos_pred)        
    prob = pos_pred[0][1]
    prob = 1-prob
    output = output_y2.format(prob * 100)
    return output

#Define predict for y3.
def y3_predict(*args):
    df3 = pd.DataFrame([args], columns=x3.columns)
    pos_pred = y3_model.predict_proba(df3)
    pos_pred = y3_calib_model.predict_proba(pos_pred)            
    prob = pos_pred[0][1]
    prob = 1-prob    
    output = output_y3.format(prob * 100)
    return output


#Define function for wrapping feature labels.
def wrap_labels(ax, width, break_long_words=False):
    labels = []
    for label in ax.get_yticklabels():
        text = label.get_text()
        labels.append(textwrap.fill(text, width=width, break_long_words=break_long_words))
    ax.set_yticklabels(labels, rotation=0)
    

#Define interpret for y1.
def y1_interpret(*args):
    df1 = pd.DataFrame([args], columns=x1.columns)
    shap_values1 = y1_explainer(df1).values
    shap_values1 = np.abs(shap_values1)
    shap.bar_plot(shap_values1[0], max_display = 10, show = False, feature_names = f1_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 20)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(7)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig

#Define interpret for y2.
def y2_interpret(*args):
    df2 = pd.DataFrame([args], columns=x2.columns)
    shap_values2 = y2_explainer(df2).values
    shap_values2 = np.abs(shap_values2)
    shap.bar_plot(shap_values2[0], max_display = 10, show = False, feature_names = f2_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 20)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(7)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig

#Define interpret for y3.
def y3_interpret(*args):
    df3 = pd.DataFrame([args], columns=x3.columns)
    shap_values3 = y3_explainer(df3).values
    shap_values3 = np.abs(shap_values3)
    shap.bar_plot(shap_values3[0], max_display = 10, show = False, feature_names = f3_names)
    fig = plt.gcf()
    ax = plt.gca()
    wrap_labels(ax, 20)
    ax.figure
    plt.tight_layout()
    fig.set_figheight(7)
    fig.set_figwidth(9)
    plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
    plt.tick_params(axis="y",direction="out", labelsize = 12)
    plt.tick_params(axis="x",direction="out", labelsize = 12)
    return fig



with gr.Blocks(title = "NCDB-Chordoma") as demo:
        
    gr.Markdown(
        """
    <br/>
    <center><h1>Spinal Chordoma</h1></center>
    <center><h2>Survival Outcomes Prediction Tool</h2></center>
    <center><i>The publication describing the details of this predictive tool will be posted here upon the acceptance of publication.</i><center>
        """
    )

    gr.Markdown(
        """
        <center><h3>Model Performances</h3></center>
          <div style="text-align:center;">
          <table style="width:100%;">
          <tr>
            <th>Outcome</th>
            <th>Algorithm</th>
            <th>Sensitivity</th>
            <th>Specificity</th>
            <th>Accuracy</th>
            <th>AUPRC</th>
            <th>AUROC</th>
            <th>Brier Score</th>
          </tr>
          <tr>
            <td>3-Year Mortality</td>
            <td>Random Forest</td>
            <td>0.321 (0.268 - 0.374)</td>
            <td>0.792 (0.746 - 0.838)</td>
            <td>0.708 (0.656 - 0.760)</td>
            <td>0.272 (0.221 - 0.323)</td>
            <td>0.742 (0.620 - 0.762)</td>
            <td>0.142 (0.102 - 0.182)</td>             
          </tr>
          <tr>
            <td>5-Year Mortality</td>
            <td>LightGBM</td>
            <td>0.590 (0.528 - 0.652)</td>
            <td>0.778 (0.726 - 0.83)</td>
            <td>0.714 (0.657 - 0.771)</td>
            <td>0.565 (0.502 - 0.628)</td>
            <td>0.807 (0.683 - 0.813)</td>
            <td>0.190 (0.14 - 0.24)</td>             
          </tr>
          <tr>
            <td>10-Year Mortality</td>
            <td>CatBoost</td>
            <td>0.862 (0.809 - 0.915)</td>
            <td>0.591 (0.515 - 0.667)</td>
            <td>0.788 (0.725 - 0.851)</td>
            <td>0.944 (0.908 - 0.980)</td>
            <td>0.893 (0.795 - 0.914)</td>
            <td>0.147 (0.092 - 0.202)</td>             
          </tr>                               
        </table>
        </div>
        """
    )    

    with gr.Row():

        with gr.Column():

            Age_at_Diagnosis = gr.Slider(label="Age", minimum = 18, maximum = 99, step = 1, value = 50)

            Sex = gr.Dropdown(label = "Sex", choices = ['Male', 'Female'], type = 'index', value = 'Male')
            
            Race = gr.Dropdown(label = "Race", choices = ['White', 'Black', 'Asian Indian or Pakistani', 'American Indian, Aleutian, or Eskimo', 'Chinese', 'Filipino', 'Vietnamese', 'Hawaiian', 'Japanese', 'Korean', 'Other or Unknown'], type = 'index', value = 'White')

            Hispanic_Ethnicity = gr.Dropdown(label = "Hispanic Ethnicity", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
            
            Insurance_Status = gr.Dropdown(label = "Insurance Status", choices = ['Private insurance', 'Medicare', 'Medicaid', 'Other government', 'Not insured', 'Unknown'], type = 'index', value = 'Private insurance')
            
            Facility_Type = gr.Dropdown(label = "Facility Type", choices = ['Academic/Research Program', 'Comprehensive Community Cancer Program', 'Integrated Network Cancer Program', 'Community Cancer Program', 'Other or Unknown'], type = 'index', value = 'Academic/Research Program')
            
            Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['South Atlantic', 'East North Central', 'Middle Atlantic', 'East North Central', 'Middle Atlantic', 'Pacific', 'West South Central', 'West North Central', 'East South Central', 'New England', 'Mountain', 'Unknown or Other'], type = 'index', value = 'South Atlantic')

            CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '2', 'Greater than 3'], type = 'index', value = '0')
                                    
            Histology = gr.Dropdown(label = "Histology", choices = ['Chordoma, NOS', 'Chondroid Chordoma', 'Dedifferentiated Chordoma'], type = 'index', value = 'Chordoma, NOS')
            
            Primary_Site = gr.Dropdown(label = "Primary Site", choices = ['Sacrum/Pelvis', 'Spine'], type = 'index', value = 'Sacrum/Pelvis')
            
            Diagnostic_Biopsy = gr.Dropdown(label = "Diagnostic Biopsy", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'No')
            
            Tumor_Size_Largest_Diameter = gr.Dropdown(label = "Tumor Size (Largest Diameter)", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
            
            Tumor_Size_Second_Largest_Diameter = gr.Dropdown(label = "Tumor Size (Second Largest Diameter)", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')
            
            Tumor_Size_Third_Largest_Diameter = gr.Dropdown(label = "Tumor Size (Third Largest Diameter)", choices = ['< 2 cm', '2 - 3.9 cm', '4 - 5.9 cm', '6 - 7.9 cm', '8 - 9.9 cm', '10 - 11.9 cm', '12 - 13.9 cm', '14 - 15.9 cm', '16 - 17.9 cm', '18 - 19.9 cm', '> 20 cm', 'Unknown'], type = 'index', value = '< 2 cm')            
                                    
            Regional_Lymph_Nodes = gr.Dropdown(label = 'Regional Lymph Nodes', choices = ['No', 'Yes', 'Unknown or not applicable'], type = 'index', value = 'No')
            
            Distant_Metastasis = gr.Dropdown(label = 'Distant Metastasis', choices = ['No', 'Yes', 'Unknown or not applicable'], type = 'index', value = 'No')
            
            Surgery = gr.Dropdown(label = "Surgery", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'Yes')
            
            Surgical_Margins = gr.Dropdown(label = "Surgical Margins", choices = ['No residual tumor', 'Residual tumor', 'No surgery was performed', 'Unknown'], type = 'index', value = 'No residual tumor')
            
            Radiation_Treatment = gr.Dropdown(label = "Radiation Treatment", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'Yes')
            
            Chemotherapy = gr.Dropdown(label = "Chemotherapy", choices = ['No', 'Yes', 'Unknown'], type = 'index', value = 'Yes')            
            
        with gr.Column():
            
            with gr.Box():
                
                gr.Markdown(
                    """
                    <center> <h2>3-Year Survival</h2> </center>
                    <br/>
                    <center> This model uses the Random Forest algorithm.</center>
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y1_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label1 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y1_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot1 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
            with gr.Box():
                gr.Markdown(
                    """
                    <center> <h2>5-Year Survival</h2> </center>
                    <br/>
                    <center> This model uses the LightGBM algorithm.</center>
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y2_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label2 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y2_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot2 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
            with gr.Box():
                
                gr.Markdown(
                    """
                    <center> <h2> 10-Year Survival</h2> </center>
                    <br/>
                    <center> This model uses the CatBoost algorithm.</center>
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y3_predict_btn = gr.Button(value="Predict")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                label3 = gr.Markdown()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                with gr.Row():
                    y3_interpret_btn = gr.Button(value="Explain")
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )
                
                plot3 = gr.Plot()
                
                gr.Markdown(
                    """
                    <br/>
                    """
                    )  

           
                y1_predict_btn.click(
                    y1_predict,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [label1]
                )

                y2_predict_btn.click(
                    y2_predict,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [label2]
                )
                
                y3_predict_btn.click(
                    y3_predict,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [label3]
                )

                y1_interpret_btn.click(
                    y1_interpret,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [plot1],
                )
                
                y2_interpret_btn.click(
                    y2_interpret,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [plot2],
                )

                y3_interpret_btn.click(
                    y3_interpret,
                    inputs = [Facility_Type, Facility_Location, Age_at_Diagnosis, Sex, Race, Hispanic_Ethnicity, Insurance_Status, CharlsonDeyo_Score, Primary_Site, Histology, Diagnostic_Biopsy, Tumor_Size_Largest_Diameter, Tumor_Size_Second_Largest_Diameter, Tumor_Size_Third_Largest_Diameter, Regional_Lymph_Nodes, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiation_Treatment],
                    outputs = [plot3],
                )
                
    gr.Markdown(
                """    
                <center><h2>Disclaimer</h2>
                <center> 
                The data utilized for this tool is sourced from the Commission on Cancer (CoC) of the American College of Surgeons and the American Cancer Society. These institutions, however, have not verified the information and are not responsible for the statistical validity of the data analysis or the conclusions drawn by the authors. This predictive tool, available on this webpage, is designed to provide general health information only and is not a substitute for professional medical advice, diagnosis, or treatment. It is strongly recommended that users consult with their own healthcare provider for any health-related concerns or issues. The authors make no warranties or representations, express or implied, regarding the accuracy, timeliness, relevance, or utility of the information contained in this tool. The health information in the prediction tool is subject to change and can be affected by various confounders, therefore it may be outdated, incomplete, or incorrect. No doctor-patient relationship is created by using this prediction tool and the authors have not validated its content. The authors do not record any specific user information or initiate contact with users. Before making any healthcare decisions or taking or refraining from any action based on the information in this prediction tool, it is advisable to seek professional advice from a healthcare provider. By using the prediction tool, users acknowledge and agree that neither the authors nor any other party will be liable for any decisions made, actions taken or not taken as a result of the information provided herein.
                <br/>
                <h4>By using this tool, you accept all of the above terms.<h4/>
                </center>
                """
    )                
                
demo.launch()