Spaces:
Runtime error
Runtime error
File size: 16,083 Bytes
35e001b b247efa 01c5715 5d9e718 35e001b b247efa 01c5715 5d9e718 35e001b b247efa 01c5715 5d9e718 35e001b b247efa 01c5715 5d9e718 35e001b 12ec3f6 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b 01c5715 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b 8771170 b247efa f5b49bf 35e001b efcc3f9 fc88df8 efcc3f9 b247efa 8771170 35e001b 8771170 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b b247efa 35e001b 21a8e1b 35e001b 21a8e1b 35e001b 21a8e1b 35e001b 21a8e1b 35e001b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import os
HF_TOKEN = os.getenv("HF_TOKEN")
import numpy as np
import pandas as pd
import sklearn
import sklearn.metrics
from math import sqrt
from scipy import stats as st
from matplotlib import pyplot as plt
from sklearn.linear_model import LogisticRegression
import shap
import gradio as gr
import random
import re
import textwrap
from datasets import load_dataset
#Read data training data.
x1 = load_dataset("mertkarabacak/NCDB-Chordoma", data_files="60m_data_train.csv", use_auth_token = HF_TOKEN)
x1 = pd.DataFrame(x1['train'])
x1 = x1.iloc[:, 1:]
print(x1.columns)
x2 = load_dataset("mertkarabacak/NCDB-Chordoma", data_files="120m_data_train.csv", use_auth_token = HF_TOKEN)
x2 = pd.DataFrame(x2['train'])
x2 = x2.iloc[:, 1:]
print(x2.columns)
#Read validation data.
x1_valid = load_dataset("mertkarabacak/NCDB-Chordoma", data_files="60m_data_valid.csv", use_auth_token = HF_TOKEN)
x1_valid = pd.DataFrame(x1_valid['train'])
x1_valid = x1_valid.iloc[:, 1:]
print(x1_valid.columns)
x2_valid = load_dataset("mertkarabacak/NCDB-Chordoma", data_files="120m_data_valid.csv", use_auth_token = HF_TOKEN)
x2_valid = pd.DataFrame(x2_valid['train'])
x2_valid = x2_valid.iloc[:, 1:]
print(x2_valid.columns)
#Define feature names.
f1_names = list(x1.columns)
f1_names = [f1.replace('__', ' - ') for f1 in f1_names]
f1_names = [f1.replace('_', ' ') for f1 in f1_names]
f2_names = list(x2.columns)
f2_names = [f2.replace('__', ' - ') for f2 in f2_names]
f2_names = [f2.replace('_', ' ') for f2 in f2_names]
#Prepare training data for the outcome 1.
y1 = x1.pop('OUTCOME')
#Prepare validation data for the outcome 1.
y1_valid = x1_valid.pop('OUTCOME')
#Prepare training data for the outcome 2.
y2 = x2.pop('OUTCOME')
#Prepare validation data for the outcome 2.
y2_valid = x2_valid.pop('OUTCOME')
#Assign hyperparameters.
y1_params = {'objective': 'CrossEntropy', 'colsample_bylevel': 0.0724536745649557, 'depth': 4, 'boosting_type': 'Ordered', 'bootstrap_type': 'Bayesian', 'bagging_temperature': 3.19632337181607, 'random_state': 31}
y2_params = {'objective': 'CrossEntropy', 'colsample_bylevel': 0.09584124096653913, 'depth': 10, 'boosting_type': 'Plain', 'bootstrap_type': 'MVS', 'random_state': 31}
#Training models.
from catboost import CatBoostClassifier
cb = CatBoostClassifier(**y1_params)
y1_model = cb
y1_model = y1_model.fit(x1, y1)
y1_explainer = shap.Explainer(y1_model.predict, x1)
y1_calib_probs = y1_model.predict_proba(x1_valid)
y1_calib_model = LogisticRegression()
y1_calib_model = y1_calib_model.fit(y1_calib_probs, y1_valid)
from catboost import CatBoostClassifier
cb = CatBoostClassifier(**y2_params)
y2_model = cb
y2_model = y2_model.fit(x2, y2)
y2_explainer = shap.Explainer(y2_model.predict, x2)
y2_calib_probs = y2_model.predict_proba(x2_valid)
y2_calib_model = LogisticRegression()
y2_calib_model = y2_calib_model.fit(y2_calib_probs, y2_valid)
output_y1 = (
"""
<br/>
<center>The probability of 5-year survival:</center>
<br/>
<center><h1>{:.2f}%</h1></center>
"""
)
output_y2 = (
"""
<br/>
<center>The probability of 10-year survival:</center>
<br/>
<center><h1>{:.2f}%</h1></center>
"""
)
#Define predict for y1.
def y1_predict(*args):
df1 = pd.DataFrame([args], columns=x1.columns)
pos_pred = y1_model.predict_proba(df1)
pos_pred = y1_calib_model.predict_proba(pos_pred)
prob = pos_pred[0][1]
prob = 1-prob
output = output_y1.format(prob * 100)
return output
#Define predict for y2.
def y2_predict(*args):
df2 = pd.DataFrame([args], columns=x2.columns)
pos_pred = y2_model.predict_proba(df2)
pos_pred = y2_calib_model.predict_proba(pos_pred)
prob = pos_pred[0][1]
prob = 1-prob
output = output_y2.format(prob * 100)
return output
#Define function for wrapping feature labels.
def wrap_labels(ax, width, break_long_words=False):
labels = []
for label in ax.get_yticklabels():
text = label.get_text()
labels.append(textwrap.fill(text, width=width, break_long_words=break_long_words))
ax.set_yticklabels(labels, rotation=0)
#Define interpret for y1.
def y1_interpret(*args):
df1 = pd.DataFrame([args], columns=x1.columns)
shap_values1 = y1_explainer(df1).values
shap_values1 = np.abs(shap_values1)
shap.bar_plot(shap_values1[0], max_display = 10, show = False, feature_names = f1_names)
fig = plt.gcf()
ax = plt.gca()
wrap_labels(ax, 20)
ax.figure
plt.tight_layout()
fig.set_figheight(7)
fig.set_figwidth(9)
plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
plt.tick_params(axis="y",direction="out", labelsize = 12)
plt.tick_params(axis="x",direction="out", labelsize = 12)
return fig
#Define interpret for y2.
def y2_interpret(*args):
df2 = pd.DataFrame([args], columns=x2.columns)
shap_values2 = y2_explainer(df2).values
shap_values2 = np.abs(shap_values2)
shap.bar_plot(shap_values2[0], max_display = 10, show = False, feature_names = f2_names)
fig = plt.gcf()
ax = plt.gca()
wrap_labels(ax, 20)
ax.figure
plt.tight_layout()
fig.set_figheight(7)
fig.set_figwidth(9)
plt.xlabel("SHAP value (impact on model output)", fontsize =12, fontweight = 'heavy', labelpad = 8)
plt.tick_params(axis="y",direction="out", labelsize = 12)
plt.tick_params(axis="x",direction="out", labelsize = 12)
return fig
with gr.Blocks(title = "NCDB-Chordoma") as demo:
gr.Markdown(
"""
<br/>
<center><h2>NOT FOR CLINICAL USE</h2><center>
<br/>
<center><h1>Spinal Chordoma Survival Outcomes</h1></center>
<center><h2>Prediction Tool</h2></center>
<br/>
<center><h3>This web application should not be used to guide any clinical decisions.</h3><center>
<br/>
<center><i>The publication describing the details of this prediction tool will be posted here upon the acceptance of publication.</i><center>
"""
)
gr.Markdown(
"""
<center><h3>Model Performances</h3></center>
<div style="text-align:center;">
<table style="width:100%;">
<tr>
<th>Outcome</th>
<th>Algorithm</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Accuracy</th>
<th>AUPRC</th>
<th>AUROC</th>
<th>Brier Score</th>
</tr>
<tr>
<td>5-Year Mortality</td>
<td>CatBoost</td>
<td>0.648 (0.588 - 0.708)</td>
<td>0.721 (0.664 - 0.778)</td>
<td>0.665 (0.606 - 0.724)</td>
<td>0.694 (0.636 - 0.752)</td>
<td>0.801 (0.734 - 0.842)</td>
<td>0.185 (0.136 - 0.234)</td>
</tr>
<tr>
<td>10-Year Mortality</td>
<td>CatBoost</td>
<td>0.731 (0.663 - 0.799)</td>
<td>0.738 (0.670 - 0.806)</td>
<td>0.890 (0.842 - 0.938)</td>
<td>0.733 (0.665 - 0.801)</td>
<td>0.814 (0.752 - 0.842)</td>
<td>0.159 (0.103 - 0.217)</td>
</tr>
</table>
</div>
"""
)
with gr.Row():
with gr.Column():
Age = gr.Dropdown(label = "Age at Diagnosis", choices = ['18-44', '45-64', '64-79', '80+'], type = 'index', value = '45-64')
Sex = gr.Dropdown(label = "Sex", choices = ['Male', 'Female'], type = 'index', value = 'Male')
Race = gr.Dropdown(label = "Race", choices = ['White', 'Black', 'Other'], type = 'index', value = 'White')
Hispanic_Ethnicity = gr.Dropdown(label = "Hispanic Ethnicity", choices = ['No', 'Yes'], type = 'index', value = 'No')
Insurance_Status = gr.Dropdown(label = "Insurance Status", choices = ['Government', 'Private', 'Not insured'], type = 'index', value = 'Government')
Facility_Type = gr.Dropdown(label = "Facility Type", choices = ['Academic/Research Program', 'Community Cancer Program', 'Integrated Network Cancer Program'], type = 'index', value = 'Academic/Research Program')
Facility_Location = gr.Dropdown(label = "Facility Location", choices = ['Northeast', 'South', 'Midwest', 'West'], type = 'index', value = 'Northeast')
CharlsonDeyo_Score = gr.Dropdown(label = "Charlson-Deyo Score", choices = ['0', '1', '≥ 2'], type = 'index', value = '0')
Histology = gr.Dropdown(label = "Histology", choices = ['Chordoma, NOS', 'Chondroid Chordoma', 'Dedifferentiated Chordoma'], type = 'index', value = 'Chordoma, NOS')
Primary_Site = gr.Dropdown(label = "Primary Site", choices = ['Spine', 'Sacrum/Pelvis'], type = 'index', value = 'Spine')
Maximum_Tumor_Dimension = gr.Dropdown(label = "Maximum Tumor Dimension", choices = ['0-5 cm', '5-10 cm', '10+ cm'], type = 'index', value = '0-5 cm')
Distant_Metastasis = gr.Dropdown(label = 'Distant Metastasis', choices = ['No distant metastasis', 'Distant metastasis',], type = 'index', value = 'No distant metastasis')
Surgery = gr.Dropdown(label = "Surgery", choices = ['No', 'Yes'], type = 'index', value = 'Yes')
Surgical_Margins = gr.Dropdown(label = "Surgical Margins", choices = ['No residual tumor', 'Residual tumor', 'No surgery was performed'], type = 'index', value = 'No residual tumor')
Radiotherapy = gr.Dropdown(label = "Radiotherapy", choices = ['No', 'Yes'], type = 'index', value = 'No')
Chemotherapy = gr.Dropdown(label = "Chemotherapy", choices = ['No', 'Yes'], type = 'index', value = 'No')
with gr.Column():
with gr.Box():
gr.Markdown(
"""
<center> <h2>5-Year Survival</h2> </center>
<br/>
<center> This model uses the CatBoost algorithm.</center>
<br/>
"""
)
with gr.Row():
y1_predict_btn = gr.Button(value="Predict")
gr.Markdown(
"""
<br/>
"""
)
label1 = gr.Markdown()
gr.Markdown(
"""
<br/>
"""
)
with gr.Row():
y1_interpret_btn = gr.Button(value="Explain")
gr.Markdown(
"""
<br/>
"""
)
plot1 = gr.Plot()
gr.Markdown(
"""
<br/>
"""
)
with gr.Box():
gr.Markdown(
"""
<center> <h2>10-Year Survival</h2> </center>
<br/>
<center> This model uses the CatBoost algorithm.</center>
<br/>
"""
)
with gr.Row():
y2_predict_btn = gr.Button(value="Predict")
gr.Markdown(
"""
<br/>
"""
)
label2 = gr.Markdown()
gr.Markdown(
"""
<br/>
"""
)
with gr.Row():
y2_interpret_btn = gr.Button(value="Explain")
gr.Markdown(
"""
<br/>
"""
)
plot2 = gr.Plot()
gr.Markdown(
"""
<br/>
"""
)
y1_predict_btn.click(
y1_predict,
inputs = [Histology, Primary_Site, Age, Sex, Race, Hispanic_Ethnicity, Insurance_Status, Facility_Type, Facility_Location, CharlsonDeyo_Score, Maximum_Tumor_Dimension, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiotherapy],
outputs = [label1]
)
y2_predict_btn.click(
y2_predict,
inputs = [Histology, Primary_Site, Age, Sex, Race, Hispanic_Ethnicity, Insurance_Status, Facility_Type, Facility_Location, CharlsonDeyo_Score, Maximum_Tumor_Dimension, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiotherapy],
outputs = [label2]
)
y1_interpret_btn.click(
y1_interpret,
inputs = [Histology, Primary_Site, Age, Sex, Race, Hispanic_Ethnicity, Insurance_Status, Facility_Type, Facility_Location, CharlsonDeyo_Score, Maximum_Tumor_Dimension, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiotherapy],
outputs = [plot1],
)
y2_interpret_btn.click(
y2_interpret,
inputs = [Histology, Primary_Site, Age, Sex, Race, Hispanic_Ethnicity, Insurance_Status, Facility_Type, Facility_Location, CharlsonDeyo_Score, Maximum_Tumor_Dimension, Distant_Metastasis, Surgery, Surgical_Margins, Chemotherapy, Radiotherapy],
outputs = [plot2],
)
gr.Markdown(
"""
<center><h2>Disclaimer</h2>
<center>
The data utilized for this tool is sourced from the Commission on Cancer (CoC) of the American College of Surgeons and the American Cancer Society. These institutions, however, have not verified the information and are not responsible for the statistical validity of the data analysis or the conclusions drawn by the authors. This predictive tool, available on this webpage, is designed to provide general health information only and is not a substitute for professional medical advice, diagnosis, or treatment. It is strongly recommended that users consult with their own healthcare provider for any health-related concerns or issues. The authors make no warranties or representations, express or implied, regarding the accuracy, timeliness, relevance, or utility of the information contained in this tool. The health information in the prediction tool is subject to change and can be affected by various confounders, therefore it may be outdated, incomplete, or incorrect. No doctor-patient relationship is created by using this prediction tool and the authors have not validated its content. The authors do not record any specific user information or initiate contact with users. Before making any healthcare decisions or taking or refraining from any action based on the information in this prediction tool, it is advisable to seek professional advice from a healthcare provider. By using the prediction tool, users acknowledge and agree that neither the authors nor any other party will be liable for any decisions made, actions taken or not taken as a result of the information provided herein.
<br/>
<h4>By using this tool, you accept all of the above terms.<h4/>
</center>
"""
)
demo.launch() |