Spaces:
Runtime error
Runtime error
Commit
·
d473f9b
1
Parent(s):
0a258d6
Update app.py
Browse files
app.py
CHANGED
@@ -19,17 +19,42 @@ import textwrap
|
|
19 |
from datasets import load_dataset
|
20 |
|
21 |
|
22 |
-
#Read data training data
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
#Define feature names (g2).
|
35 |
g2_f1_names = list(g2_x1.columns)
|
@@ -188,17 +213,41 @@ def g2_y4_predict(*args):
|
|
188 |
output = g2_output_y4.format(prob * 100)
|
189 |
return output
|
190 |
|
191 |
-
#Read data training data
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
g3_x3_valid = pd.read_csv("g3_36m_data_valid.csv", index_col = 0, low_memory = False)
|
201 |
-
g3_x4_valid = pd.read_csv("g3_60m_data_valid.csv", index_col = 0, low_memory = False)
|
202 |
|
203 |
#Define feature names (g3).
|
204 |
g3_f1_names = list(g3_x1.columns)
|
@@ -515,10 +564,12 @@ with gr.Blocks(title = "NCDB-G2G3 Glioma") as demo:
|
|
515 |
gr.Markdown(
|
516 |
"""
|
517 |
<br/>
|
|
|
|
|
518 |
<center><h1>Grade II and III Glioma Survival Outcomes</h1></center>
|
519 |
<center><h2>Prediction Tool</h2></center>
|
520 |
<br/>
|
521 |
-
<center><
|
522 |
"""
|
523 |
)
|
524 |
|
|
|
19 |
from datasets import load_dataset
|
20 |
|
21 |
|
22 |
+
#Read data training data.
|
23 |
+
|
24 |
+
g2_x1 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_12m_data_train.csv", use_auth_token = HF_TOKEN)
|
25 |
+
g2_x1 = pd.DataFrame(g2_x1['train'])
|
26 |
+
g2_x1 = g2_x1.iloc[:, 1:]
|
27 |
+
|
28 |
+
g2_x2 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_24m_data_train.csv", use_auth_token = HF_TOKEN)
|
29 |
+
g2_x2 = pd.DataFrame(g2_x2['train'])
|
30 |
+
g2_x2 = g2_x2.iloc[:, 1:]
|
31 |
+
|
32 |
+
g2_x3 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_36m_data_train.csv", use_auth_token = HF_TOKEN)
|
33 |
+
g2_x3 = pd.DataFrame(g2_x3['train'])
|
34 |
+
g2_x3 = g2_x3.iloc[:, 1:]
|
35 |
+
|
36 |
+
g2_x4 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_60m_data_train.csv", use_auth_token = HF_TOKEN)
|
37 |
+
g2_x4 = pd.DataFrame(g2_x4['train'])
|
38 |
+
g2_x4 = g2_x4.iloc[:, 1:]
|
39 |
+
|
40 |
+
#Read validation data.
|
41 |
+
|
42 |
+
g2_x1_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_12m_data_valid.csv", use_auth_token = HF_TOKEN)
|
43 |
+
g2_x1_valid = pd.DataFrame(g2_x1_valid['train'])
|
44 |
+
g2_x1_valid = g2_x1_valid.iloc[:, 1:]
|
45 |
+
|
46 |
+
g2_x2_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_24m_data_valid.csv", use_auth_token = HF_TOKEN)
|
47 |
+
g2_x2_valid = pd.DataFrame(g2_x2_valid['train'])
|
48 |
+
g2_x2_valid = g2_x2_valid.iloc[:, 1:]
|
49 |
+
|
50 |
+
g2_x3_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_36m_data_valid.csv", use_auth_token = HF_TOKEN)
|
51 |
+
g2_x3_valid = pd.DataFrame(g2_x3_valid['train'])
|
52 |
+
g2_x3_valid = g2_x3_valid.iloc[:, 1:]
|
53 |
+
|
54 |
+
g2_x4_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_60m_data_valid.csv", use_auth_token = HF_TOKEN)
|
55 |
+
g2_x4_valid = pd.DataFrame(g2_x4_valid['train'])
|
56 |
+
g2_x4_valid = g2_x4_valid.iloc[:, 1:]
|
57 |
+
|
58 |
|
59 |
#Define feature names (g2).
|
60 |
g2_f1_names = list(g2_x1.columns)
|
|
|
213 |
output = g2_output_y4.format(prob * 100)
|
214 |
return output
|
215 |
|
216 |
+
#Read data training data.
|
217 |
+
|
218 |
+
g3_x1 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_12m_data_train.csv", use_auth_token = HF_TOKEN)
|
219 |
+
g3_x1 = pd.DataFrame(g3_x1['train'])
|
220 |
+
g3_x1 = g3_x1.iloc[:, 1:]
|
221 |
+
|
222 |
+
g3_x2 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_24m_data_train.csv", use_auth_token = HF_TOKEN)
|
223 |
+
g3_x2 = pd.DataFrame(g3_x2['train'])
|
224 |
+
g3_x2 = g3_x2.iloc[:, 1:]
|
225 |
+
|
226 |
+
g3_x3 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_36m_data_train.csv", use_auth_token = HF_TOKEN)
|
227 |
+
g3_x3 = pd.DataFrame(g3_x3['train'])
|
228 |
+
g3_x3 = g3_x3.iloc[:, 1:]
|
229 |
+
|
230 |
+
g3_x4 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_60m_data_train.csv", use_auth_token = HF_TOKEN)
|
231 |
+
g3_x4 = pd.DataFrame(g3_x4['train'])
|
232 |
+
g3_x4 = g3_x4.iloc[:, 1:]
|
233 |
+
|
234 |
+
#Read validation data.
|
235 |
+
|
236 |
+
g3_x1_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_12m_data_valid.csv", use_auth_token = HF_TOKEN)
|
237 |
+
g3_x1_valid = pd.DataFrame(g3_x1_valid['train'])
|
238 |
+
g3_x1_valid = g3_x1_valid.iloc[:, 1:]
|
239 |
+
|
240 |
+
g3_x2_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_24m_data_valid.csv", use_auth_token = HF_TOKEN)
|
241 |
+
g3_x2_valid = pd.DataFrame(g3_x2_valid['train'])
|
242 |
+
g3_x2_valid = g3_x2_valid.iloc[:, 1:]
|
243 |
+
|
244 |
+
g3_x3_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_36m_data_valid.csv", use_auth_token = HF_TOKEN)
|
245 |
+
g3_x3_valid = pd.DataFrame(g3_x3_valid['train'])
|
246 |
+
g3_x3_valid = g3_x3_valid.iloc[:, 1:]
|
247 |
|
248 |
+
g3_x4_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_60m_data_valid.csv", use_auth_token = HF_TOKEN)
|
249 |
+
g3_x4_valid = pd.DataFrame(g3_x4_valid['train'])
|
250 |
+
g3_x4_valid = g3_x4_valid.iloc[:, 1:]
|
|
|
|
|
251 |
|
252 |
#Define feature names (g3).
|
253 |
g3_f1_names = list(g3_x1.columns)
|
|
|
564 |
gr.Markdown(
|
565 |
"""
|
566 |
<br/>
|
567 |
+
<center><h2>NOT FOR CLINICAL USE.</h2><center>
|
568 |
+
<br/>
|
569 |
<center><h1>Grade II and III Glioma Survival Outcomes</h1></center>
|
570 |
<center><h2>Prediction Tool</h2></center>
|
571 |
<br/>
|
572 |
+
<center><h3>This web application should not be used to guide any clinical decisions.</h3><center>
|
573 |
"""
|
574 |
)
|
575 |
|