mertkarabacak commited on
Commit
d473f9b
·
1 Parent(s): 0a258d6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -22
app.py CHANGED
@@ -19,17 +19,42 @@ import textwrap
19
  from datasets import load_dataset
20
 
21
 
22
- #Read data training data (g2).
23
- g2_x1 = pd.read_csv("g2_12m_data_train.csv", index_col = 0, low_memory = False)
24
- g2_x2 = pd.read_csv("g2_24m_data_train.csv", index_col = 0, low_memory = False)
25
- g2_x3 = pd.read_csv("g2_36m_data_train.csv", index_col = 0, low_memory = False)
26
- g2_x4 = pd.read_csv("g2_60m_data_train.csv", index_col = 0, low_memory = False)
27
-
28
- #Read validation data (g2).
29
- g2_x1_valid = pd.read_csv("g2_12m_data_valid.csv", index_col = 0, low_memory = False)
30
- g2_x2_valid = pd.read_csv("g2_24m_data_valid.csv", index_col = 0, low_memory = False)
31
- g2_x3_valid = pd.read_csv("g2_36m_data_valid.csv", index_col = 0, low_memory = False)
32
- g2_x4_valid = pd.read_csv("g2_60m_data_valid.csv", index_col = 0, low_memory = False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  #Define feature names (g2).
35
  g2_f1_names = list(g2_x1.columns)
@@ -188,17 +213,41 @@ def g2_y4_predict(*args):
188
  output = g2_output_y4.format(prob * 100)
189
  return output
190
 
191
- #Read data training data (g3).
192
- g3_x1 = pd.read_csv("g3_12m_data_train.csv", index_col = 0, low_memory = False)
193
- g3_x2 = pd.read_csv("g3_24m_data_train.csv", index_col = 0, low_memory = False)
194
- g3_x3 = pd.read_csv("g3_36m_data_train.csv", index_col = 0, low_memory = False)
195
- g3_x4 = pd.read_csv("g3_60m_data_train.csv", index_col = 0, low_memory = False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
196
 
197
- #Read validation data (g3).
198
- g3_x1_valid = pd.read_csv("g3_12m_data_valid.csv", index_col = 0, low_memory = False)
199
- g3_x2_valid = pd.read_csv("g3_24m_data_valid.csv", index_col = 0, low_memory = False)
200
- g3_x3_valid = pd.read_csv("g3_36m_data_valid.csv", index_col = 0, low_memory = False)
201
- g3_x4_valid = pd.read_csv("g3_60m_data_valid.csv", index_col = 0, low_memory = False)
202
 
203
  #Define feature names (g3).
204
  g3_f1_names = list(g3_x1.columns)
@@ -515,10 +564,12 @@ with gr.Blocks(title = "NCDB-G2G3 Glioma") as demo:
515
  gr.Markdown(
516
  """
517
  <br/>
 
 
518
  <center><h1>Grade II and III Glioma Survival Outcomes</h1></center>
519
  <center><h2>Prediction Tool</h2></center>
520
  <br/>
521
- <center><i>This web application should not be used to guide any clinical decisions.</i><center>
522
  """
523
  )
524
 
 
19
  from datasets import load_dataset
20
 
21
 
22
+ #Read data training data.
23
+
24
+ g2_x1 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_12m_data_train.csv", use_auth_token = HF_TOKEN)
25
+ g2_x1 = pd.DataFrame(g2_x1['train'])
26
+ g2_x1 = g2_x1.iloc[:, 1:]
27
+
28
+ g2_x2 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_24m_data_train.csv", use_auth_token = HF_TOKEN)
29
+ g2_x2 = pd.DataFrame(g2_x2['train'])
30
+ g2_x2 = g2_x2.iloc[:, 1:]
31
+
32
+ g2_x3 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_36m_data_train.csv", use_auth_token = HF_TOKEN)
33
+ g2_x3 = pd.DataFrame(g2_x3['train'])
34
+ g2_x3 = g2_x3.iloc[:, 1:]
35
+
36
+ g2_x4 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_60m_data_train.csv", use_auth_token = HF_TOKEN)
37
+ g2_x4 = pd.DataFrame(g2_x4['train'])
38
+ g2_x4 = g2_x4.iloc[:, 1:]
39
+
40
+ #Read validation data.
41
+
42
+ g2_x1_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_12m_data_valid.csv", use_auth_token = HF_TOKEN)
43
+ g2_x1_valid = pd.DataFrame(g2_x1_valid['train'])
44
+ g2_x1_valid = g2_x1_valid.iloc[:, 1:]
45
+
46
+ g2_x2_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_24m_data_valid.csv", use_auth_token = HF_TOKEN)
47
+ g2_x2_valid = pd.DataFrame(g2_x2_valid['train'])
48
+ g2_x2_valid = g2_x2_valid.iloc[:, 1:]
49
+
50
+ g2_x3_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_36m_data_valid.csv", use_auth_token = HF_TOKEN)
51
+ g2_x3_valid = pd.DataFrame(g2_x3_valid['train'])
52
+ g2_x3_valid = g2_x3_valid.iloc[:, 1:]
53
+
54
+ g2_x4_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g2_60m_data_valid.csv", use_auth_token = HF_TOKEN)
55
+ g2_x4_valid = pd.DataFrame(g2_x4_valid['train'])
56
+ g2_x4_valid = g2_x4_valid.iloc[:, 1:]
57
+
58
 
59
  #Define feature names (g2).
60
  g2_f1_names = list(g2_x1.columns)
 
213
  output = g2_output_y4.format(prob * 100)
214
  return output
215
 
216
+ #Read data training data.
217
+
218
+ g3_x1 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_12m_data_train.csv", use_auth_token = HF_TOKEN)
219
+ g3_x1 = pd.DataFrame(g3_x1['train'])
220
+ g3_x1 = g3_x1.iloc[:, 1:]
221
+
222
+ g3_x2 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_24m_data_train.csv", use_auth_token = HF_TOKEN)
223
+ g3_x2 = pd.DataFrame(g3_x2['train'])
224
+ g3_x2 = g3_x2.iloc[:, 1:]
225
+
226
+ g3_x3 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_36m_data_train.csv", use_auth_token = HF_TOKEN)
227
+ g3_x3 = pd.DataFrame(g3_x3['train'])
228
+ g3_x3 = g3_x3.iloc[:, 1:]
229
+
230
+ g3_x4 = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_60m_data_train.csv", use_auth_token = HF_TOKEN)
231
+ g3_x4 = pd.DataFrame(g3_x4['train'])
232
+ g3_x4 = g3_x4.iloc[:, 1:]
233
+
234
+ #Read validation data.
235
+
236
+ g3_x1_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_12m_data_valid.csv", use_auth_token = HF_TOKEN)
237
+ g3_x1_valid = pd.DataFrame(g3_x1_valid['train'])
238
+ g3_x1_valid = g3_x1_valid.iloc[:, 1:]
239
+
240
+ g3_x2_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_24m_data_valid.csv", use_auth_token = HF_TOKEN)
241
+ g3_x2_valid = pd.DataFrame(g3_x2_valid['train'])
242
+ g3_x2_valid = g3_x2_valid.iloc[:, 1:]
243
+
244
+ g3_x3_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_36m_data_valid.csv", use_auth_token = HF_TOKEN)
245
+ g3_x3_valid = pd.DataFrame(g3_x3_valid['train'])
246
+ g3_x3_valid = g3_x3_valid.iloc[:, 1:]
247
 
248
+ g3_x4_valid = load_dataset("mertkarabacak/G2G3-Glioma", data_files="g3_60m_data_valid.csv", use_auth_token = HF_TOKEN)
249
+ g3_x4_valid = pd.DataFrame(g3_x4_valid['train'])
250
+ g3_x4_valid = g3_x4_valid.iloc[:, 1:]
 
 
251
 
252
  #Define feature names (g3).
253
  g3_f1_names = list(g3_x1.columns)
 
564
  gr.Markdown(
565
  """
566
  <br/>
567
+ <center><h2>NOT FOR CLINICAL USE.</h2><center>
568
+ <br/>
569
  <center><h1>Grade II and III Glioma Survival Outcomes</h1></center>
570
  <center><h2>Prediction Tool</h2></center>
571
  <br/>
572
+ <center><h3>This web application should not be used to guide any clinical decisions.</h3><center>
573
  """
574
  )
575