Update index.js
Browse files
index.js
CHANGED
@@ -1,79 +1,32 @@
|
|
1 |
-
import { pipeline
|
2 |
-
|
3 |
-
//
|
4 |
-
|
5 |
-
|
6 |
-
//
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
const
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
detect(EXAMPLE_URL);
|
22 |
});
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
reader.readAsDataURL(file);
|
36 |
-
});
|
37 |
-
|
38 |
-
|
39 |
-
// Detect objects in the image
|
40 |
-
async function detect(img) {
|
41 |
-
imageContainer.innerHTML = '';
|
42 |
-
imageContainer.style.backgroundImage = `url(${img})`;
|
43 |
-
|
44 |
-
status.textContent = 'Analysing...';
|
45 |
-
const output = await detector(img, {
|
46 |
-
threshold: 0.5,
|
47 |
-
percentage: true,
|
48 |
-
});
|
49 |
-
status.textContent = '';
|
50 |
-
output.forEach(renderBox);
|
51 |
-
}
|
52 |
-
|
53 |
-
// Render a bounding box and label on the image
|
54 |
-
function renderBox({ box, label }) {
|
55 |
-
const { xmax, xmin, ymax, ymin } = box;
|
56 |
-
|
57 |
-
// Generate a random color for the box
|
58 |
-
const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
|
59 |
-
|
60 |
-
// Draw the box
|
61 |
-
const boxElement = document.createElement('div');
|
62 |
-
boxElement.className = 'bounding-box';
|
63 |
-
Object.assign(boxElement.style, {
|
64 |
-
borderColor: color,
|
65 |
-
left: 100 * xmin + '%',
|
66 |
-
top: 100 * ymin + '%',
|
67 |
-
width: 100 * (xmax - xmin) + '%',
|
68 |
-
height: 100 * (ymax - ymin) + '%',
|
69 |
-
})
|
70 |
-
|
71 |
-
// Draw label
|
72 |
-
const labelElement = document.createElement('span');
|
73 |
-
labelElement.textContent = label;
|
74 |
-
labelElement.className = 'bounding-box-label';
|
75 |
-
labelElement.style.backgroundColor = color;
|
76 |
-
|
77 |
-
boxElement.appendChild(labelElement);
|
78 |
-
imageContainer.appendChild(boxElement);
|
79 |
-
}
|
|
|
1 |
+
import { pipeline } from "@huggingface/transformers";
|
2 |
+
|
3 |
+
// Create a text-generation pipeline
|
4 |
+
const generator = await pipeline(
|
5 |
+
"text-generation",
|
6 |
+
"HuggingFaceTB/SmolLM2-360M", // You can replace this with other models like "EleutherAI/gpt-neo-125M" or "facebook/opt-125m"
|
7 |
+
{ device: "webgpu" }
|
8 |
+
);
|
9 |
+
|
10 |
+
// Generate text
|
11 |
+
const prompts = [
|
12 |
+
"Once upon a time",
|
13 |
+
"The artificial intelligence"
|
14 |
+
];
|
15 |
+
|
16 |
+
const results = await generator(prompts, {
|
17 |
+
max_length: 50,
|
18 |
+
num_return_sequences: 1,
|
19 |
+
temperature: 0.7,
|
20 |
+
top_p: 0.9
|
|
|
21 |
});
|
22 |
|
23 |
+
console.log(results);
|
24 |
+
// Will output something like:
|
25 |
+
// [
|
26 |
+
// [{
|
27 |
+
// "generated_text": "Once upon a time there was a young princess who lived in a castle..."
|
28 |
+
// }],
|
29 |
+
// [{
|
30 |
+
// "generated_text": "The artificial intelligence revolution has transformed the way we..."
|
31 |
+
// }]
|
32 |
+
// ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|