Ayesha352's picture
Rename app(1).py to app.py
056da88 verified
raw
history blame
6.24 kB
import gradio as gr
import cv2
import numpy as np
import matplotlib.pyplot as plt
import json
import math
import os
def ransac(image1, image2, detector_type):
"""
Finds the homography matrix using the RANSAC algorithm with the selected feature detector.
"""
gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)
if detector_type == "SIFT":
detector = cv2.SIFT_create()
matcher = cv2.FlannBasedMatcher(dict(algorithm=1, trees=5), dict(checks=50))
elif detector_type == "ORB":
detector = cv2.ORB_create()
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
elif detector_type == "BRISK":
detector = cv2.BRISK_create()
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
elif detector_type == "AKAZE":
detector = cv2.AKAZE_create()
matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
elif detector_type == "KAZE":
detector = cv2.KAZE_create()
matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
else:
return None
kp1, des1 = detector.detectAndCompute(gray1, None)
kp2, des2 = detector.detectAndCompute(gray2, None)
if des1 is None or des2 is None or len(kp1) < 2 or len(kp2) < 2:
return None
try:
if detector_type == "SIFT":
matches = matcher.knnMatch(des1, des2, k=2)
good_matches = []
if matches:
for m, n in matches:
if m.distance < 0.75 * n.distance:
good_matches.append(m)
else:
matches = matcher.match(des1, des2)
good_matches = sorted(matches, key=lambda x: x.distance)
except cv2.error as e:
print(f"Error during matching: {e}")
return None
if len(good_matches) > 10:
src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
return H
else:
return None
def get_bounding_box_points(json_data):
"""
Extracts and calculates the four corner points of the bounding box, assuming x,y are top-left.
"""
print_area = json_data['printAreas'][0]
x = print_area['position']['x']
y = print_area['position']['y']
w = print_area['width']
h = print_area['height']
rotation_deg = print_area['rotation']
points = np.float32([
[0, 0],
[w, 0],
[w, h],
[0, h]
]).reshape(-1, 1, 2)
rotation_rad = math.radians(rotation_deg)
cos_theta = math.cos(rotation_rad)
sin_theta = math.sin(rotation_rad)
rotation_matrix = np.array([
[cos_theta, -sin_theta],
[sin_theta, cos_theta]
])
rotated_points = np.dot(points.reshape(-1, 2), rotation_matrix.T)
final_points = rotated_points + np.array([x, y])
return final_points.reshape(-1, 1, 2)
def process_and_plot_all_detectors(image1_np, image2_np, json_file):
"""
Processes the images with all available detectors and returns image data for display and download.
"""
if image1_np is None or image2_np is None:
return [None] * 6
try:
with open(json_file.name, 'r') as f:
data = json.load(f)
except Exception as e:
print(f"Error: Could not read JSON file. {e}")
return [None] * 6
detectors = ["SIFT", "ORB", "BRISK", "AKAZE", "KAZE"]
gallery_images = []
download_files = [None] * 5
for i, detector_type in enumerate(detectors):
H = ransac(image1_np, image2_np, detector_type)
if H is not None:
box_points = get_bounding_box_points(data)
output_flat_img = image1_np.copy()
cv2.polylines(output_flat_img, [np.int32(box_points)], isClosed=True, color=(0, 0, 255), thickness=5)
transformed_box_points = cv2.perspectiveTransform(box_points, H)
output_perspective_img = image2_np.copy()
cv2.polylines(output_perspective_img, [np.int32(transformed_box_points)], isClosed=True, color=(0, 0, 255), thickness=5)
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
axes[0].imshow(cv2.cvtColor(output_flat_img, cv2.COLOR_BGR2RGB))
axes[0].set_title(f'Original (Flat) - {detector_type}')
axes[0].axis('off')
axes[1].imshow(cv2.cvtColor(image2_np, cv2.COLOR_BGR2RGB))
axes[1].set_title('Original (Perspective)')
axes[1].axis('off')
axes[2].imshow(cv2.cvtColor(output_perspective_img, cv2.COLOR_BGR2RGB))
axes[2].set_title('Projected Bounding Box')
axes[2].axis('off')
plt.tight_layout()
file_name = f"result_{detector_type.lower()}.png"
plt.savefig(file_name)
plt.close(fig)
gallery_images.append(file_name)
download_files[i] = file_name
else:
print(f"Warning: Homography matrix could not be found with {detector_type} detector. Skipping this result.")
# We don't append None to the gallery_images list to avoid the error.
# download_files[i] remains None, which is handled correctly by gr.File.
return [gallery_images] + download_files
iface = gr.Interface(
fn=process_and_plot_all_detectors,
inputs=[
gr.Image(type="numpy", label="Image 1 (Flat)"),
gr.Image(type="numpy", label="Image 2 (Perspective)"),
gr.File(type="filepath", label="JSON File")
],
outputs=[
gr.Gallery(label="Results"),
gr.File(label="Download SIFT Result"),
gr.File(label="Download ORB Result"),
gr.File(label="Download BRISK Result"),
gr.File(label="Download AKAZE Result"),
gr.File(label="Download KAZE Result")
],
title="Homography and Bounding Box Projection with All Detectors",
description="Upload two images and a JSON file to see the bounding box projection for all 5 feature extraction methods. Each result can be downloaded separately."
)
iface.launch()