File size: 6,239 Bytes
0d72d25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
import cv2
import numpy as np
import matplotlib.pyplot as plt
import json
import math
import os

def ransac(image1, image2, detector_type):
    """
    Finds the homography matrix using the RANSAC algorithm with the selected feature detector.
    """
    gray1 = cv2.cvtColor(image1, cv2.COLOR_RGB2GRAY)
    gray2 = cv2.cvtColor(image2, cv2.COLOR_RGB2GRAY)

    if detector_type == "SIFT":
        detector = cv2.SIFT_create()
        matcher = cv2.FlannBasedMatcher(dict(algorithm=1, trees=5), dict(checks=50))
    elif detector_type == "ORB":
        detector = cv2.ORB_create()
        matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    elif detector_type == "BRISK":
        detector = cv2.BRISK_create()
        matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    elif detector_type == "AKAZE":
        detector = cv2.AKAZE_create()
        matcher = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
    elif detector_type == "KAZE":
        detector = cv2.KAZE_create()
        matcher = cv2.BFMatcher(cv2.NORM_L2, crossCheck=True)
    else:
        return None

    kp1, des1 = detector.detectAndCompute(gray1, None)
    kp2, des2 = detector.detectAndCompute(gray2, None)

    if des1 is None or des2 is None or len(kp1) < 2 or len(kp2) < 2:
        return None

    try:
        if detector_type == "SIFT":
            matches = matcher.knnMatch(des1, des2, k=2)
            good_matches = []
            if matches:
                for m, n in matches:
                    if m.distance < 0.75 * n.distance:
                        good_matches.append(m)
        else:
            matches = matcher.match(des1, des2)
            good_matches = sorted(matches, key=lambda x: x.distance)
    except cv2.error as e:
        print(f"Error during matching: {e}")
        return None

    if len(good_matches) > 10:
        src_pts = np.float32([kp1[m.queryIdx].pt for m in good_matches]).reshape(-1, 1, 2)
        dst_pts = np.float32([kp2[m.trainIdx].pt for m in good_matches]).reshape(-1, 1, 2)
        H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0)
        return H
    else:
        return None

def get_bounding_box_points(json_data):
    """
    Extracts and calculates the four corner points of the bounding box, assuming x,y are top-left.
    """
    print_area = json_data['printAreas'][0]
    x = print_area['position']['x']
    y = print_area['position']['y']
    w = print_area['width']
    h = print_area['height']
    rotation_deg = print_area['rotation']

    points = np.float32([
        [0, 0],
        [w, 0],
        [w, h],
        [0, h]
    ]).reshape(-1, 1, 2)

    rotation_rad = math.radians(rotation_deg)
    cos_theta = math.cos(rotation_rad)
    sin_theta = math.sin(rotation_rad)
    rotation_matrix = np.array([
        [cos_theta, -sin_theta],
        [sin_theta,  cos_theta]
    ])

    rotated_points = np.dot(points.reshape(-1, 2), rotation_matrix.T)
    final_points = rotated_points + np.array([x, y])
    return final_points.reshape(-1, 1, 2)

def process_and_plot_all_detectors(image1_np, image2_np, json_file):
    """
    Processes the images with all available detectors and returns image data for display and download.
    """
    if image1_np is None or image2_np is None:
        return [None] * 6

    try:
        with open(json_file.name, 'r') as f:
            data = json.load(f)
    except Exception as e:
        print(f"Error: Could not read JSON file. {e}")
        return [None] * 6

    detectors = ["SIFT", "ORB", "BRISK", "AKAZE", "KAZE"]
    gallery_images = []
    download_files = [None] * 5

    for i, detector_type in enumerate(detectors):
        H = ransac(image1_np, image2_np, detector_type)

        if H is not None:
            box_points = get_bounding_box_points(data)
            
            output_flat_img = image1_np.copy()
            cv2.polylines(output_flat_img, [np.int32(box_points)], isClosed=True, color=(0, 0, 255), thickness=5)

            transformed_box_points = cv2.perspectiveTransform(box_points, H)

            output_perspective_img = image2_np.copy()
            cv2.polylines(output_perspective_img, [np.int32(transformed_box_points)], isClosed=True, color=(0, 0, 255), thickness=5)

            fig, axes = plt.subplots(1, 3, figsize=(18, 6))
            axes[0].imshow(cv2.cvtColor(output_flat_img, cv2.COLOR_BGR2RGB))
            axes[0].set_title(f'Original (Flat) - {detector_type}')
            axes[0].axis('off')

            axes[1].imshow(cv2.cvtColor(image2_np, cv2.COLOR_BGR2RGB))
            axes[1].set_title('Original (Perspective)')
            axes[1].axis('off')

            axes[2].imshow(cv2.cvtColor(output_perspective_img, cv2.COLOR_BGR2RGB))
            axes[2].set_title('Projected Bounding Box')
            axes[2].axis('off')
            
            plt.tight_layout()
            
            file_name = f"result_{detector_type.lower()}.png"
            plt.savefig(file_name)
            plt.close(fig)

            gallery_images.append(file_name)
            download_files[i] = file_name
        else:
            print(f"Warning: Homography matrix could not be found with {detector_type} detector. Skipping this result.")
            # We don't append None to the gallery_images list to avoid the error.
            # download_files[i] remains None, which is handled correctly by gr.File.
    
    return [gallery_images] + download_files

iface = gr.Interface(
    fn=process_and_plot_all_detectors,
    inputs=[
        gr.Image(type="numpy", label="Image 1 (Flat)"),
        gr.Image(type="numpy", label="Image 2 (Perspective)"),
        gr.File(type="filepath", label="JSON File")
    ],
    outputs=[
        gr.Gallery(label="Results"),
        gr.File(label="Download SIFT Result"),
        gr.File(label="Download ORB Result"),
        gr.File(label="Download BRISK Result"),
        gr.File(label="Download AKAZE Result"),
        gr.File(label="Download KAZE Result")
    ],
    title="Homography and Bounding Box Projection with All Detectors",
    description="Upload two images and a JSON file to see the bounding box projection for all 5 feature extraction methods. Each result can be downloaded separately."
)

iface.launch()