Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image, ImageEnhance
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import cv2
|
6 |
+
|
7 |
+
# Load YOLO model
|
8 |
+
model_path = "./best.pt"
|
9 |
+
modelY = YOLO(model_path)
|
10 |
+
modelY.to('cpu')
|
11 |
+
|
12 |
+
# Preprocessing function
|
13 |
+
def preprocessing(image):
|
14 |
+
if image.mode != 'RGB':
|
15 |
+
image = image.convert('RGB')
|
16 |
+
image = ImageEnhance.Sharpness(image).enhance(2.0)
|
17 |
+
image = ImageEnhance.Contrast(image).enhance(1.5)
|
18 |
+
image = ImageEnhance.Brightness(image).enhance(0.8)
|
19 |
+
width = 448
|
20 |
+
aspect_ratio = image.height / image.width
|
21 |
+
height = int(width * aspect_ratio)
|
22 |
+
return image.resize((width, height))
|
23 |
+
|
24 |
+
# YOLO document detection and cropping
|
25 |
+
def detect_and_crop_document(image):
|
26 |
+
image_np = np.array(image)
|
27 |
+
results = modelY(image_np, conf=0.85, device='cpu')
|
28 |
+
cropped_images = []
|
29 |
+
predictions = []
|
30 |
+
for result in results:
|
31 |
+
for box in result.boxes:
|
32 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
33 |
+
conf = int(box.conf[0] * 100) # Convert confidence to percentage
|
34 |
+
cls = int(box.cls[0])
|
35 |
+
class_name = modelY.names[cls].capitalize() # Ensure class names are capitalized
|
36 |
+
cropped_image_np = image_np[y1:y2, x1:x2]
|
37 |
+
cropped_image = Image.fromarray(cropped_image_np)
|
38 |
+
cropped_images.append(cropped_image)
|
39 |
+
predictions.append(f"STNK {class_name} -- (Confidence: {conf}%)")
|
40 |
+
if not cropped_images:
|
41 |
+
return None, "No document detected"
|
42 |
+
return cropped_images[0], predictions[0]
|
43 |
+
|
44 |
+
# Gradio interface
|
45 |
+
def process_image(image):
|
46 |
+
preprocessed_image = preprocessing(image)
|
47 |
+
cropped_image, prediction = detect_and_crop_document(preprocessed_image)
|
48 |
+
return cropped_image, prediction
|
49 |
+
|
50 |
+
with gr.Blocks(css=".gr-button {background-color: #4caf50; color: white; font-size: 16px; padding: 10px 20px; border-radius: 8px;}") as demo:
|
51 |
+
gr.Markdown(
|
52 |
+
"""
|
53 |
+
<h1 style="text-align: center; color: #4caf50;">📜 License Registration Classification</h1>
|
54 |
+
<p style="text-align: center; font-size: 18px;">Upload an image and let the YOLO model detect and crop license documents automatically.</p>
|
55 |
+
"""
|
56 |
+
)
|
57 |
+
with gr.Row():
|
58 |
+
with gr.Column(scale=1, min_width=300):
|
59 |
+
input_image = gr.Image(type="pil", label="Upload License Image", interactive=True)
|
60 |
+
with gr.Row():
|
61 |
+
clear_btn = gr.Button("Clear")
|
62 |
+
submit_btn = gr.Button("Detect Document")
|
63 |
+
with gr.Column(scale=2):
|
64 |
+
output_image = gr.Image(label="Cropped Document", interactive=False)
|
65 |
+
output_text = gr.Textbox(label="Detection Result", interactive=False)
|
66 |
+
|
67 |
+
submit_btn.click(process_image, inputs=input_image, outputs=[output_image, output_text])
|
68 |
+
clear_btn.click(lambda: (None, ""), outputs=[output_image, output_text])
|
69 |
+
|
70 |
+
demo.launch()
|