Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,62 +1,26 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import cv2
|
3 |
-
import time
|
4 |
import numpy as np
|
5 |
-
from
|
6 |
-
from sahi.predict import get_sliced_prediction
|
7 |
-
from pathlib import Path
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
model_type='ultralytics',
|
12 |
-
model_path="./DDR.pt", # Replace with your model path
|
13 |
-
confidence_threshold=0.01,
|
14 |
-
device="cpu" # Change to 'cuda:0' if you have a GPU
|
15 |
-
)
|
16 |
-
|
17 |
-
OUTPUT_PATH = "./pred_image.jpg"
|
18 |
-
TEMP_PNG_PATH = "./pred_image.png"
|
19 |
|
20 |
-
|
21 |
-
"""Poll for the file to exist until the timeout (in seconds) is reached."""
|
22 |
-
start_time = time.time()
|
23 |
-
while not Path(file_path).exists():
|
24 |
-
if time.time() - start_time > timeout:
|
25 |
-
return False
|
26 |
-
time.sleep(0.5)
|
27 |
-
return True
|
28 |
|
29 |
-
def
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
detection_model,
|
34 |
-
slice_height=256,
|
35 |
-
slice_width=256,
|
36 |
-
overlap_height_ratio=0.2,
|
37 |
-
overlap_width_ratio=0.2
|
38 |
-
)
|
39 |
-
|
40 |
-
# Export visualization to a temporary PNG file.
|
41 |
-
result.export_visuals(export_dir=Path(TEMP_PNG_PATH).parent, file_name=Path(TEMP_PNG_PATH).name)
|
42 |
-
|
43 |
-
# Wait for the PNG file to be created.
|
44 |
-
if not wait_for_file(TEMP_PNG_PATH, timeout=10):
|
45 |
-
raise FileNotFoundError(f"SAHI did not save the PNG file at {TEMP_PNG_PATH}")
|
46 |
-
|
47 |
-
# Read the PNG image, convert it to JPG, and remove the temporary file.
|
48 |
-
processed_image = cv2.imread(TEMP_PNG_PATH)
|
49 |
-
cv2.imwrite(OUTPUT_PATH, processed_image)
|
50 |
-
Path(TEMP_PNG_PATH).unlink() # Delete the temporary PNG
|
51 |
-
|
52 |
-
return OUTPUT_PATH
|
53 |
|
54 |
-
|
55 |
-
fn=
|
56 |
inputs=gr.Image(type="numpy"),
|
57 |
-
outputs=gr.Image(type="
|
58 |
-
title="
|
59 |
-
description="Upload an image
|
60 |
)
|
61 |
|
62 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
import cv2
|
|
|
4 |
import numpy as np
|
5 |
+
from ultralytics import YOLO
|
|
|
|
|
6 |
|
7 |
+
def load_model(model_path="DDR.pt"):
|
8 |
+
return YOLO(model_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
model = load_model()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
def predict(image):
|
13 |
+
results = model(image, conf=0.01)
|
14 |
+
pred_img = results[0].plot() # Visualize detections
|
15 |
+
return pred_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=predict,
|
19 |
inputs=gr.Image(type="numpy"),
|
20 |
+
outputs=gr.Image(type="numpy"),
|
21 |
+
title="DDR-Detection",
|
22 |
+
description="Upload an image, and the model will detect objects using YOLO11.",
|
23 |
)
|
24 |
|
25 |
+
if __name__ == "__main__":
|
26 |
+
iface.launch()
|