File size: 1,533 Bytes
0dcb80d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import gradio as gr
import cv2
import time
import numpy as np
from sahi import AutoDetectionModel
from sahi.predict import get_sliced_prediction
from pathlib import Path

detection_model = AutoDetectionModel.from_pretrained(
    model_type='ultralytics',
    model_path="/workspace/runs/detect/train2/weights/last.pt",  # Replace with your model path
    confidence_threshold=0.01,
    device="cpu"  # Change to 'cuda:0' if you have a GPU
)

OUTPUT_PATH = "/workspace/pred_image.jpg"
TEMP_PNG_PATH = "/workspace/pred_image.png"

def run_inference(image):
    input_path = "/workspace/input_image.jpg"
    cv2.imwrite(input_path, cv2.cvtColor(image, cv2.COLOR_RGB2BGR))
    
    result = get_sliced_prediction(
        input_path,
        detection_model,
        slice_height=256,
        slice_width=256,
        overlap_height_ratio=0.2,
        overlap_width_ratio=0.2
    )
    
    result.export_visuals(export_dir=Path(TEMP_PNG_PATH).parent, file_name=Path(TEMP_PNG_PATH).name)
    
    time.sleep(2)
    
    if not Path(TEMP_PNG_PATH).exists():
        raise FileNotFoundError(f"SAHI did not save the PNG file at {TEMP_PNG_PATH}")
    
    processed_image = cv2.imread(TEMP_PNG_PATH)
    cv2.imwrite(OUTPUT_PATH, processed_image)
    Path(TEMP_PNG_PATH).unlink()
    
    return OUTPUT_PATH

demo = gr.Interface(
    fn=run_inference,
    inputs=gr.Image(type="numpy"),
    outputs=gr.Image(type="file"),
    title="YOLO11 Object Detection",
    description="Upload a DDR image to run inference using YOLO11"
)

demo.launch()