File size: 6,887 Bytes
08912f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
import pytesseract
import cv2
import pandas as pd
import re
from PIL import Image
import numpy as np

def extract_fields(image):
    try:
        # -------------------- Image Preparation --------------------
        img = np.array(image.convert("RGB"))[:, :, ::-1]  # PIL to BGR (OpenCV)
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        bw = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                   cv2.THRESH_BINARY_INV, 25, 15)
        inverted = cv2.bitwise_not(bw)
        pil_img = Image.fromarray(inverted)

        # -------------------- OCR Pass 1: Name by "Title" --------------------
        ocr_df2 = pytesseract.image_to_data(image, output_type=pytesseract.Output.DATAFRAME)
        ocr_df2 = ocr_df2.dropna(subset=["text"])
        ocr_df2 = ocr_df2[ocr_df2["text"].str.strip() != ""]

        name = "Not found"
        neighbors = []
        
        # ✅ Fix - Add these lines BEFORE you use `ocr_df`
        ocr_df = pytesseract.image_to_data(pil_img, output_type=pytesseract.Output.DATAFRAME)
        ocr_df = ocr_df.dropna(subset=["text"])
        ocr_df = ocr_df[ocr_df["text"].str.strip() != ""]
        title_matches = ocr_df[ocr_df['text'].str.lower().str.contains("tit", na=False)]

        if not title_matches.empty:
            title_info = title_matches.iloc[0]

            if 'line_num' in title_info and 'block_num' in title_info:
                line_num = title_info['line_num']
                block_num = title_info['block_num']

                same_line = ocr_df[
                    (ocr_df['line_num'] == line_num) &
                    (ocr_df['block_num'] == block_num)
                ].copy().sort_values(by='left').reset_index(drop=True)

                tit_indices = same_line[same_line['text'].str.lower().str.contains("tit")].index
                if not tit_indices.empty:
                    idx = tit_indices[0]
                    if idx + 1 < len(same_line):
                        neighbors.append(same_line.iloc[idx + 1]['text'])
                    if idx + 2 < len(same_line):
                        neighbors.append(same_line.iloc[idx + 2]['text'])

        def clean_name(words):
            cleaned = []
            for w in words:
                w_clean = re.sub(r'^[^a-zA-Z]+|[^a-zA-Z]+$', '', w)
                if w_clean:
                    cleaned.append(w_clean)
            return ' '.join(cleaned)

        if neighbors:
            name = clean_name(neighbors)

        # -------------------- OCR Pass 2: For Other Fields --------------------
        ocr_df2 = pytesseract.image_to_data(image, output_type=pytesseract.Output.DATAFRAME)
        ocr_df2 = ocr_df2.dropna(subset=["text"])
        ocr_df2 = ocr_df2[ocr_df2["text"].str.strip() != ""]

        def get_value_next_to(keyword, direction="right", max_dist=200):
            match = ocr_df2[ocr_df2['text'].str.lower() == keyword.lower()]
            if match.empty:
                return None
            row = match.iloc[0]
            if 'line_num' not in row or 'left' not in row:
                return None
            line = row['line_num']
            x = row['left']
            if direction == "right":
                candidates = ocr_df2[
                    (ocr_df2['line_num'] == line) &
                    (ocr_df2['left'] > x) &
                    (ocr_df2['left'] < x + max_dist)
                ].sort_values('left')
                return candidates['text'].tolist()[0] if not candidates.empty else None
            return None

        text = " ".join(ocr_df2['text'])
        email_match = re.search(r'[\w\.-]+@[\w\.-]+', text)
        phone_match = re.search(r'\+\d{2}\s?\d{2,3}\s?\d{3}\s?\d{2}\s?\d{2}', text)

        raw_text = pytesseract.image_to_string(image, config='--psm 6')

        dob_match = re.search(r'\d{2}\.\d{2}\.\d{4}', raw_text)
        dob = dob_match.group(0) if dob_match else "Not found"

        postcode = None
        postcode_after_ch = None
        ch_exists = bool(re.search(r'\bCH\b', raw_text))

        lines = raw_text.splitlines()
        for line in lines:
            if re.search(r'\bCH\b', line):
                match = re.search(r'\bCH\b.*?(\d{4})(?![\d/])', line)
                if match:
                    postcode_after_ch = match.group(1)
                    break

        if postcode_after_ch:
            postcode = postcode_after_ch
        else:
            matches = re.findall(r'(?<!\d|\w)[0-9]{4}(?!\d|\w)', raw_text)
            if matches:
                postcode = matches[0]

        if not postcode:
            postcode = "Not found"

        # -------------------- Function List Extraction --------------------
        def extract_functions_block():
            #
            func_match = ocr_df2[ocr_df2['text'].str.lower().str.contains("function")]
            if func_match.empty:
                return []
    
            base_y = func_match.iloc[0]['top']
    
            func_words = ocr_df2[ 
            (ocr_df2['top'] > base_y + 10) & (ocr_df2['top'] < base_y + 120)
            ]
    
            # Sort by line_num and left to maintain correct reading order
            func_words = func_words.sort_values(by=["line_num", "left"])

            grouped_lines = func_words.groupby('line_num')['text'].apply(lambda x: ' '.join(x)).tolist()
    
            clean_funcs = []
            for line in grouped_lines:
                #
                cleaned = re.sub(r'[^a-zA-Z0-9\s]', '', line).strip()
                if len(cleaned) > 1:
                    clean_funcs.append(cleaned)
            return clean_funcs

        functions = extract_functions_block()
        # -------------------- Final Output --------------------
        return [
            name if name else "Not found",
            email_match.group(0) if email_match else "Not found",
            phone_match.group(0) if phone_match else "Not found",
            dob,
            postcode,
            get_value_next_to("CurBase") or "Not found",
            get_value_next_to("hourly") or get_value_next_to("rate") or "Not found",
            "\n".join(functions) if functions else "Not found"
        ]

    except Exception as e:
        return [f"Error: {str(e)}"] + ["Not found"] * 8


# -------------------- Gradio Interface --------------------
demo = gr.Interface(
    fn=extract_fields,
    inputs=gr.Image(type="pil"),
    outputs=[
        gr.Text(label="Name"),
        gr.Text(label="Email"),
        gr.Text(label="Phone"),
        gr.Text(label="DOB"),
        gr.Text(label="Postcode"),
        gr.Text(label="Prem (CurBase)"),
        gr.Text(label="Temp (Hourly Rate)"),
        gr.Textbox(label="Functions", lines=4)
    ],
    title="Image OCR Field Extractor",
    description="Upload a document image to extract structured data fields."
)

if __name__ == "__main__": 
    demo.launch()