File size: 7,108 Bytes
ff197f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69b6522
 
ff197f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69b6522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff197f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69b6522
 
ff197f1
 
 
 
 
 
 
 
 
 
 
 
69b6522
ff197f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"  # Force CPU if needed
import torch
import numpy as np
from PIL import Image
from PIL import Image as PILImage
from pathlib import Path
import matplotlib.pyplot as plt
import io
from skimage.io import imread
from skimage.color import rgb2gray
from csbdeep.utils import normalize
from stardist.models import StarDist2D
from stardist.plot import render_label
from MEDIARFormer  import MEDIARFormer 
from Predictor import Predictor
from cellpose import models as cellpose_models, io as cellpose_io, plot as cellpose_plot

# Load SegFormer
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor_segformer = SegformerImageProcessor(do_reduce_labels=False)
model_segformer = SegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b0-finetuned-ade-512-512",
    num_labels=8,
    ignore_mismatched_sizes=True
)
model_segformer.load_state_dict(torch.load("trained_model_200.pt", map_location="cpu"))
model_segformer.eval()

# StarDist model
model_stardist = StarDist2D.from_pretrained('2D_versatile_fluo')

# Cellpose model
model_cellpose = cellpose_models.CellposeModel(gpu=False)

# Handle SegFormer prediction
def infer_segformer(image):
    image = image.convert("RGB")
    inputs = processor_segformer(images=image, return_tensors="pt")
    with torch.no_grad():
        logits = model_segformer(**inputs).logits
    pred_mask = torch.argmax(logits, dim=1)[0].cpu().numpy()

    # Colorize
    colors = np.array([[0,0,0], [255,0,0], [0,255,0], [0,0,255], [255,255,0], [255,0,255], [0,255,255], [128,128,128]])
    color_mask = np.zeros((pred_mask.shape[0], pred_mask.shape[1], 3), dtype=np.uint8)
    for c in range(8):
        color_mask[pred_mask == c] = colors[c]
    return image, Image.fromarray(color_mask)

# Handle StarDist prediction
def infer_stardist(image):
    image_gray = rgb2gray(np.array(image)) if image.mode == 'RGB' else np.array(image)
    labels, _ = model_stardist.predict_instances(normalize(image_gray))
    overlay = render_label(labels, img=image_gray)
    overlay = (overlay[..., :3] * 255).astype(np.uint8)
    return image, Image.fromarray(overlay)

# Handle MEDIAR prediction
def infer_mediar(image, temp_dir="temp_mediar"):
    os.makedirs(temp_dir, exist_ok=True)
    input_path = os.path.join(temp_dir, "input_image.tiff")
    output_path = os.path.join(temp_dir, "input_image_label.tiff")

    image.save(input_path)

    model_args = {
        "classes": 3,
        "decoder_channels": [1024, 512, 256, 128, 64],
        "decoder_pab_channels": 256,
        "encoder_name": 'mit_b5',
        "in_channels": 3
    }

    model = MEDIARFormer(**model_args)
    weights = torch.load("from_phase1.pth", map_location="cpu")
    model.load_state_dict(weights, strict=False)
    model.eval()

    predictor = Predictor(model, "cpu", temp_dir, temp_dir, algo_params={"use_tta": False})
    predictor.img_names = ["input_image.tiff"]
    _ = predictor.conduct_prediction()

    pred = imread(output_path)
    fig, ax = plt.subplots(figsize=(6, 6))
    ax.imshow(pred, cmap="cividis")
    ax.axis("off")

    buf = io.BytesIO()
    plt.savefig(buf, format="png")
    plt.close()
    buf.seek(0)

    return image, Image.open(buf)
# Handle Cellpose prediction
def infer_cellpose(image, temp_dir="temp_cellpose"):
    os.makedirs(temp_dir, exist_ok=True)
    input_path = os.path.join(temp_dir, "input_image.tif")
    output_overlay = os.path.join(temp_dir, "overlay.png")

    # Save image
    image.save(input_path)
    img = cellpose_io.imread(input_path)
    masks, flows, styles = model_cellpose.eval(img, batch_size=1)

    fig = plt.figure(figsize=(12,5))
    cellpose_plot.show_segmentation(fig, img, masks, flows[0])
    plt.tight_layout()
    fig.savefig(output_overlay)
    plt.close(fig)

    return image, Image.open(output_overlay)

# Wrapper function
def segment(model_name, image):
    # Gradio passes a PIL.Image without filename attribute
    # Try to check format if available, else skip check
    ext = None
    if hasattr(image, 'format') and image.format is not None:
        ext = image.format.lower()
    if model_name == "Cellpose":
        # Accept only TIFF images for Cellpose
        if ext not in ["tiff", "tif", None]:
            return None, f"❌ Cellpose only supports `.tif` or `.tiff` images."
    # ...existing code...
    if model_name == "SegFormer":
        return infer_segformer(image)
    elif model_name == "StarDist":
        return infer_stardist(image)
    elif model_name == "MEDIAR":
        return infer_mediar(image)
    elif model_name == "Cellpose":
        return infer_cellpose(image)
    else:
        return None, f"❌ Unknown model: {model_name}"

with gr.Blocks(title="Cell Segmentation Explorer") as app:
    gr.Markdown("## Cell Segmentation Explorer")
    gr.Markdown("Choose a segmentation model, upload an appropriate image, and view the predicted mask.")

    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(
                choices=["SegFormer", "StarDist", "MEDIAR", "Cellpose"],
                label="Select Segmentation Model",
                value="SegFormer"
            )
            image_input = gr.Image(type="pil", label="Uploaded Image")
            description_box = gr.Markdown("Accepted formats: `.png`, `.jpg`, `.tif`, `.tiff`.")
            submit_btn = gr.Button("Submit")
            clear_btn = gr.Button("Clear")
        with gr.Column():
            output_image = gr.Image(label="Segmentation Result")

    def handle_submit(model_name, img):
        if img is None:
            return None
        _, result = segment(model_name, img)  # Only return the mask (segmentation result)
        return result

    submit_btn.click(
        fn=handle_submit,
        inputs=[model_dropdown, image_input],
        outputs=output_image
    )

    clear_btn.click(
        lambda: [None, None],
        inputs=None,
        outputs=[image_input, output_image]
    )

    # === SAMPLE IMAGES SECTION ===
    gr.Markdown("---")
    gr.Markdown("### Sample Images (click to use as input)")

    # Original and resized thumbnails
    original_sample_paths = [
        "img1.png",
        "img2.png",
        "img3.png"
    ]

    resized_sample_paths = []
    for idx, p in enumerate(original_sample_paths):
        img = PILImage.open(p).resize((128, 128))
        temp_path = f"/tmp/sample_resized_{idx}.png"
        img.save(temp_path)
        resized_sample_paths.append(temp_path)

    sample_image_components = []
    with gr.Row():
        for i, img_path in enumerate(resized_sample_paths):
            def load_full_image(idx=i):  # Capture loop index properly
                return PILImage.open(original_sample_paths[idx])

            sample_img = gr.Image(value=img_path, type="pil", interactive=True, show_label=False)
            sample_img.select(
                fn=load_full_image,
                inputs=[],
                outputs=image_input
            )
            sample_image_components.append(sample_img)


app.launch()