Spaces:
Runtime error
Runtime error
void dump(const llama_token_data_array * candidates) { | |
for (size_t i = 0; i < candidates->size; i++) { | |
printf("%d: %f (%f)\n", candidates->data[i].id, candidates->data[i].p, candidates->data[i].logit); | |
} | |
} | |
void test_top_k(const std::vector<float> & probs, | |
const std::vector<float> & expected_probs, | |
int k) { | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_top_k(nullptr, &candidates_p, k, 1); | |
DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-5); | |
} | |
} | |
void test_top_p(const std::vector<float> & probs, | |
const std::vector<float> & expected_probs, | |
float p) { | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_top_p(nullptr, &candidates_p, p, 1); | |
DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
void test_tfs(const std::vector<float> & probs, | |
const std::vector<float> & expected_probs, | |
float z) { | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
DUMP(&candidates_p); | |
llama_sample_tail_free(nullptr, &candidates_p, z, 1); | |
DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
void test_typical(const std::vector<float> & probs, | |
const std::vector<float> & expected_probs, | |
float p) { | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
DUMP(&candidates_p); | |
llama_sample_typical(nullptr, &candidates_p, p, 1); | |
DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
void test_repetition_penalty( | |
const std::vector<float> & probs, | |
const std::vector<llama_token> & last_tokens, | |
const std::vector<float> & expected_probs, | |
float penalty) { | |
assert(probs.size() == expected_probs.size()); | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
llama_sample_repetition_penalty(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), penalty); | |
llama_sample_softmax(nullptr, &candidates_p); | |
DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-6); | |
} | |
} | |
void test_frequency_presence_penalty( | |
const std::vector<float> & probs, | |
const std::vector<llama_token> & last_tokens, | |
const std::vector<float> & expected_probs, | |
float alpha_frequency, float alpha_presence) { | |
assert(probs.size() == expected_probs.size()); | |
size_t n_vocab = probs.size(); | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < (llama_token)n_vocab; token_id++) { | |
float logit = log(probs[token_id]); | |
candidates.emplace_back(llama_token_data{token_id, logit, 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
llama_sample_softmax(nullptr, &candidates_p); | |
// DUMP(&candidates_p); | |
llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, (const llama_token *) last_tokens.data(), last_tokens.size(), alpha_frequency, alpha_presence); | |
llama_sample_softmax(nullptr, &candidates_p); | |
// DUMP(&candidates_p); | |
assert(candidates_p.size == expected_probs.size()); | |
for (size_t i = 0; i < candidates_p.size; i++) { | |
assert(fabs(candidates_p.data[i].p - expected_probs[i]) < 1e-3); | |
} | |
} | |
int main(void) { | |
ggml_time_init(); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1); | |
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f); | |
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 1); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f}, 0.25f); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.75f); | |
test_tfs({0.1f, 0.15f, 0.2f, 0.25f, 0.3f}, {0.3f, 0.25f}, 0.99f); | |
test_typical({0.97f, 0.01f, 0.01f, 0.01f}, {0.97f}, 0.5f); | |
test_typical({0.4f, 0.2f, 0.2f, 0.2f}, {0.2f, 0.2f, 0.2f}, 0.5f); | |
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.25f, 0.25f, 0.25f, 0.25f, 0}, 50.0f); | |
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); | |
test_repetition_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.5f, 0.5f, 0, 0, 0}, 50.0f); | |
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0}, {0.249997f, 0.249997f, 0.249997f, 0.249997f, 0.000011f}, 5.0f, 5.0f); | |
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2}, {0.499966f, 0.499966f, 0.000023f, 0.000023f, 0.000023f}, 5.0f, 5.0f); | |
test_frequency_presence_penalty({0.2f, 0.2f, 0.2f, 0.2f, 0.2f}, {0, 1, 2, 0, 0}, {0.499977f, 0.499977f, 0.000023f, 0.000023f, 0.000000f}, 5.0f, 5.0f); | |
printf("OK\n"); | |
} | |