Spaces:
Runtime error
Runtime error
// | |
// logging | |
// | |
float frand() { | |
return (float)rand()/(float)RAND_MAX; | |
} | |
int irand(int n) { | |
return rand()%n; | |
} | |
void get_random_dims(int64_t * dims, int ndims) { | |
dims[0] = dims[1] = dims[2] = dims[3] = 1; | |
for (int i = 0; i < ndims; i++) { | |
dims[i] = 1 + irand(4); | |
} | |
} | |
void get_random_dims_minmax(int64_t * dims, int ndims, int min, int max) { | |
dims[0] = dims[1] = dims[2] = dims[3] = 1; | |
for (int i = 0; i < ndims; i++) { | |
dims[i] = min + irand(max-min); | |
} | |
} | |
struct ggml_tensor * get_random_tensor( | |
struct ggml_context * ctx0, | |
int ndims, | |
int64_t ne[], | |
float fmin, | |
float fmax) { | |
struct ggml_tensor * result = ggml_new_tensor(ctx0, GGML_TYPE_F32, ndims, ne); | |
switch (ndims) { | |
case 1: | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i0] = frand()*(fmax - fmin) + fmin; | |
} | |
break; | |
case 2: | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
break; | |
case 3: | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
break; | |
case 4: | |
for (int i3 = 0; i3 < ne[3]; i3++) { | |
for (int i2 = 0; i2 < ne[2]; i2++) { | |
for (int i1 = 0; i1 < ne[1]; i1++) { | |
for (int i0 = 0; i0 < ne[0]; i0++) { | |
((float *)result->data)[i3*ne[2]*ne[1]*ne[0] + i2*ne[1]*ne[0] + i1*ne[0] + i0] = frand()*(fmax - fmin) + fmin; | |
} | |
} | |
} | |
} | |
break; | |
default: | |
assert(false); | |
}; | |
return result; | |
} | |
float get_element(const struct ggml_tensor * t, int idx) { | |
return ((float *)t->data)[idx]; | |
} | |
void set_element(struct ggml_tensor * t, int idx, float value) { | |
((float *)t->data)[idx] = value; | |
} | |
int main(int argc, const char ** argv) { | |
struct ggml_init_params params = { | |
.mem_size = 1024*1024*1024, | |
.mem_buffer = NULL, | |
.no_alloc = false, | |
}; | |
struct ggml_context * ctx = ggml_init(params); | |
int64_t ne1[4] = {4, 1024, 1, 1}; | |
int64_t ne2[4] = {4, 2048, 1, 1};; | |
int64_t ne3[4] = {1024, 2048, 1, 1}; | |
struct ggml_tensor * a = get_random_tensor(ctx, 2, ne1, -1, +1); | |
struct ggml_tensor * b = get_random_tensor(ctx, 2, ne2, -1, +1); | |
ggml_set_param(ctx, a); | |
ggml_set_param(ctx, b); | |
struct ggml_tensor * c = get_random_tensor(ctx, 2, ne3, -1, +1); | |
struct ggml_tensor * ab = ggml_mul_mat(ctx, a, b); | |
struct ggml_tensor * d = ggml_sub(ctx, c, ab); | |
struct ggml_tensor * e = ggml_sum(ctx, ggml_sqr(ctx, d)); | |
struct ggml_cgraph ge = ggml_build_forward(e); | |
ggml_graph_reset (&ge); | |
ggml_graph_compute(ctx, &ge); | |
const float fe = ggml_get_f32_1d(e, 0); | |
printf("%s: e = %.4f\n", __func__, fe); | |
struct ggml_opt_params opt_params = ggml_opt_default_params(GGML_OPT_ADAM); | |
ggml_opt(ctx, opt_params, e); | |
ggml_graph_reset (&ge); | |
ggml_graph_compute(ctx, &ge); | |
const float fe_opt = ggml_get_f32_1d(e, 0); | |
printf("%s: original e = %.4f\n", __func__, fe); | |
printf("%s: optimized e = %.4f\n", __func__, fe_opt); | |
const bool success = (fe_opt <= fe); | |
assert(success); | |
ggml_free(ctx); | |
return success ? 0 : -1; | |
} | |
// int64_t ne1[4] = {4, 128, 1, 1}; | |
// int64_t ne2[4] = {4, 256, 1, 1};; | |
// int64_t ne3[4] = {128, 256, 1, 1}; | |
// main: original e = 25890.9375 | |
// main: optimized e = 10094.7031 | |
// int64_t ne1[4] = {8, 128, 1, 1}; | |
// int64_t ne2[4] = {8, 256, 1, 1};; | |
// int64_t ne3[4] = {128, 256, 1, 1}; | |
// main: original e = 39429.5078 | |
// main: optimized e = 9275.8936 | |
// int64_t ne1[4] = {16, 128, 1, 1}; | |
// int64_t ne2[4] = {16, 256, 1, 1};; | |
// int64_t ne3[4] = {128, 256, 1, 1}; | |
// main: original e = 68371.1328 | |
// main: optimized e = 7854.4502 | |
// int64_t ne1[4] = {32, 128, 1, 1}; | |
// int64_t ne2[4] = {32, 256, 1, 1};; | |
// int64_t ne3[4] = {128, 256, 1, 1}; | |
// main: original e = 126061.1953 | |
// main: optimized e = 5451.0166 | |
// int64_t ne1[4] = {4, 1024, 1, 1}; | |
// int64_t ne2[4] = {4, 2048, 1, 1};; | |
// int64_t ne3[4] = {1024, 2048, 1, 1}; | |
// main: original e = 1620817.8750 | |
// main: optimized e = 698387.6875 | |
// another run on M1 | |
// int64_t ne1[4] = {4, 1024, 1, 1}; | |
// int64_t ne2[4] = {4, 2048, 1, 1};; | |
// int64_t ne3[4] = {1024, 2048, 1, 1}; | |
// main: original e = 1629595.6250 | |
// main: optimized e = 698169.1250 | |
// int64_t ne1[4] = {32, 1024, 1, 1}; | |
// int64_t ne2[4] = {32, 2048, 1, 1};; | |
// int64_t ne3[4] = {1024, 2048, 1, 1}; | |
// main: original e = 8146770.5000 | |
// main: optimized e = 651119.1250 | |