Spaces:
Runtime error
Runtime error
replit-3b-ggml_models
/
ctransformers
/models
/submodules
/ggml
/examples
/starcoder
/convert-hf-to-ggml.py
# Convert HF models to ggml format | |
# | |
import sys | |
import struct | |
import json | |
import torch | |
import numpy as np | |
import re | |
import os | |
from transformers import AutoModelForCausalLM | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BloomForCausalLM | |
# ref: https://github.com/openai/gpt-2/blob/master/src/encoder.py | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a signficant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2**8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2**8+n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
if len(sys.argv) < 2: | |
print("Usage: python convert-hf-to-ggml.py hf-model-name [use-f32]") | |
print("Example: python convert-hf-to-ggml.py bigcode/gpt_bigcode-santacoder") | |
print("Example: python convert-hf-to-ggml.py bigcode/starcoder") | |
sys.exit(1) | |
model_name = sys.argv[1].strip() | |
fname_out = "models/" + sys.argv[1].strip() + "-ggml.bin" | |
os.makedirs(os.path.dirname(fname_out), exist_ok=True) | |
# use 16-bit or 32-bit floats | |
use_f16 = True | |
if len(sys.argv) > 2: | |
use_f16 = False | |
print("Loading model: ", model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True) | |
hparams = config.to_dict() | |
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16 if use_f16 else torch.float32, low_cpu_mem_usage=True, trust_remote_code=True, offload_state_dict=True) | |
print("Model loaded: ", model_name) | |
#print (model) | |
list_vars = model.state_dict() | |
#print (list_vars) | |
encoder = tokenizer.vocab | |
# Add added_tokens (special tokens) to the encoder | |
encoder.update(tokenizer.get_added_vocab()) | |
print(hparams) | |
print("Saving ggml model to: ", fname_out) | |
fout = open(fname_out, "wb") | |
fout.write(struct.pack("i", 0x67676d6c)) # magic: ggml in hex | |
vocab_size = hparams["vocab_size"] | |
fout.write(struct.pack("i", vocab_size)) | |
# fout.write(struct.pack("i", len(encoder))) | |
fout.write(struct.pack("i", hparams["n_positions"])) | |
fout.write(struct.pack("i", hparams["n_embd"])) | |
fout.write(struct.pack("i", hparams["n_head"])) | |
fout.write(struct.pack("i", hparams["n_layer"])) | |
fout.write(struct.pack("i", use_f16)) | |
byte_encoder = bytes_to_unicode() | |
byte_decoder = {v:k for k, v in byte_encoder.items()} | |
fout.write(struct.pack("i", vocab_size)) | |
counter = 0 | |
# sort by value | |
for key in sorted(encoder, key=encoder.get): | |
text = bytearray([byte_decoder[c] for c in key]) | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
counter += 1 | |
# TODO: Repeat last token until vocab_size | |
while counter < vocab_size: | |
fout.write(struct.pack("i", len(text))) | |
fout.write(text) | |
counter += 1 | |
# assert counter == config.vocab_size | |
for name in list_vars.keys(): | |
data = list_vars[name].squeeze().numpy() | |
print("Processing variable: " + name + " with shape: ", data.shape) | |
# rename headers to keep compatibility | |
if name == "transformer.ln_f.weight": | |
name = "model/ln_f/g" | |
elif name == "transformer.ln_f.bias": | |
name = "model/ln_f/b" | |
elif name == "transformer.wte.weight": | |
name = "model/wte" | |
elif name == "transformer.wpe.weight": | |
name = "model/wpe" | |
elif name == "lm_head.weight": | |
name = "model/lm_head" | |
elif re.match(r"transformer.h\.\d+\.ln_1\.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/ln_1/g" | |
elif re.match(r"transformer.h\.\d+\.ln_1\.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/ln_1/b" | |
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/attn/c_attn/w" | |
elif re.match(r"transformer.h\.\d+\.attn\.c_attn\.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/attn/c_attn/b" | |
elif re.match(r"transformer.h\.\d+\.attn\.c_proj\.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/attn/c_proj/w" | |
elif re.match(r"transformer.h.\d+.attn.c_proj.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/attn/c_proj/b" | |
elif re.match(r"transformer.h.\d+.ln_2.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/ln_2/g" | |
elif re.match(r"transformer.h.\d+.ln_2.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/ln_2/b" | |
elif re.match(r"transformer.h.\d+.mlp.c_fc.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/mlp/c_fc/w" | |
elif re.match(r"transformer.h.\d+.mlp.c_fc.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/mlp/c_fc/b" | |
elif re.match(r"transformer.h.\d+.mlp.c_proj.weight", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/mlp/c_proj/w" | |
elif re.match(r"transformer.h.\d+.mlp.c_proj.bias", name): | |
i = re.findall("\d+", name)[0] | |
name = f"model/h{i}/mlp/c_proj/b" | |
else: | |
print("Unrecognized variable name. %s", name) | |
# we don't need these | |
if name.endswith("attn.masked_bias") or name.endswith(".attn.bias"): | |
print(" Skipping variable: " + name) | |
continue | |
n_dims = len(data.shape); | |
# ftype == 0 -> float32, ftype == 1 -> float16 | |
ftype = 0; | |
if use_f16: | |
if (name == "model/wte" or name == "model/lm_head" or name[-2:] == "/g" or name[-2:] == "/w") and n_dims == 2: | |
print(" Converting to float16") | |
data = data.astype(np.float16) | |
ftype = 1 | |
else: | |
print(" Converting to float32") | |
data = data.astype(np.float32) | |
ftype = 0 | |
"model/h.*/attn/c_attn/w" | |
"model/h.*/attn/c_proj/w" | |
"model/h.*/mlp/c_fc/w" | |
"model/h.*/mlp/c_proj/w" | |
if name[-14:] == "/attn/c_attn/w" or name[-14:] == "/attn/c_attn/b": | |
print(" Duplicate K,V heads to use MHA instead of MQA") | |
embed_dim = hparams["n_embd"] | |
head_dim = embed_dim // hparams["n_head"] | |
# ((n_heads + 2) * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim) | |
q, k ,v = np.split(data, (hparams["n_head"] * head_dim, (hparams["n_head"] + 1) * head_dim), axis=0) | |
# duplicate k, v along the first axis (head_dim, hidden_dim) -> (n_heads * head_dim, hidden_dim) | |
if len(k.shape) == 2: | |
k = np.tile(k, (hparams["n_head"], 1)) | |
v = np.tile(v, (hparams["n_head"], 1)) | |
elif len(k.shape) == 1: | |
k = np.tile(k, (hparams["n_head"])) | |
v = np.tile(v, (hparams["n_head"])) | |
# concat q, k, v along the first axis (n_heads * head_dim, hidden_dim) -> (3 * n_heads * head_dim, hidden_dim) | |
data = np.concatenate((q, k, v), axis=0) | |
# header | |
str = name.encode('utf-8') | |
fout.write(struct.pack("iii", n_dims, len(str), ftype)) | |
for i in range(n_dims): | |
fout.write(struct.pack("i", data.shape[n_dims - 1 - i])) | |
fout.write(str); | |
# data | |
data.tofile(fout) | |
fout.close() | |
print("Done. Output file: " + fname_out) | |
print("") | |