Spaces:
Runtime error
Runtime error
// code modified from https://github.com/ggerganov/ggml/blob/master/examples/replit/main.cpp | |
// no defaults for now | |
struct replit_hparams | |
{ | |
int32_t d_model = 0; | |
int32_t max_seq_len = 0; | |
int32_t n_heads = 0; | |
int32_t n_layers = 0; | |
int32_t n_vocab = 0; | |
int32_t ftype = 0; | |
int32_t n_ctx = 2048; | |
}; | |
using piece_t = std::pair<std::size_t, float>; | |
using piece_map_t = std::unordered_map<std::string, piece_t>; | |
struct replit_tokenizer | |
{ | |
gpt_vocab raw_vocab; | |
piece_map_t piece_map; | |
std::vector<std::string> vocab; | |
}; | |
struct replit_layer | |
{ | |
// pre normalization | |
struct ggml_tensor *norm_1_weight; | |
// attention | |
struct ggml_tensor *c_attn_wqkv_weight; | |
struct ggml_tensor *c_attn_out_proj_weight; | |
// post normalization | |
struct ggml_tensor *norm_2_weight; | |
// ff | |
struct ggml_tensor *ffn_up_proj; | |
struct ggml_tensor *ffn_down_proj; | |
}; | |
struct replit_model | |
{ | |
replit_hparams hparams; | |
struct ggml_tensor *wte_weight; // position embedding | |
struct ggml_tensor *norm_f_weight; // language model head | |
std::vector<replit_layer> layers; | |
// key + value memory | |
struct ggml_tensor *memory_k; | |
struct ggml_tensor *memory_v; | |
struct ggml_context *ctx; | |
std::map<std::string, struct ggml_tensor *> tensors; | |
}; | |
std::pair<std::vector<gpt_vocab::id>, float> encode_word(const std::string &word, const piece_map_t &model) | |
{ | |
std::vector<int> best_segmentations_starts(word.length() + 1, -1); | |
best_segmentations_starts[0] = 0; | |
std::vector<float> best_segmentations_scores(word.length() + 1, -std::numeric_limits<float>::infinity()); | |
best_segmentations_scores[0] = 1.0; | |
for (int start_idx = 0; start_idx < word.length(); ++start_idx) | |
{ | |
float best_score_at_start = best_segmentations_scores[start_idx]; | |
for (int end_idx = start_idx + 1; end_idx <= word.length(); ++end_idx) | |
{ | |
std::string token = word.substr(start_idx, end_idx - start_idx); | |
if (model.count(token) && best_score_at_start != -std::numeric_limits<float>::infinity()) | |
{ | |
float token_score = model.at(token).second; | |
float score = token_score + best_score_at_start; | |
if (best_segmentations_scores[end_idx] == -std::numeric_limits<float>::infinity() || | |
best_segmentations_scores[end_idx] > score) | |
{ | |
best_segmentations_starts[end_idx] = start_idx; | |
best_segmentations_scores[end_idx] = score; | |
} | |
} | |
} | |
} | |
if (best_segmentations_scores.back() == -std::numeric_limits<float>::infinity()) | |
{ | |
return std::make_pair(std::vector<gpt_vocab::id>{0}, 0.0f); | |
} | |
float score = best_segmentations_scores.back(); | |
int start = best_segmentations_starts.back(); | |
int end = word.length(); | |
std::vector<gpt_vocab::id> tokens; | |
while (start != 0) | |
{ | |
const auto token_id = model.at(word.substr(start, end - start)).first; | |
tokens.insert(tokens.begin(), token_id); | |
int next_start = best_segmentations_starts[start]; | |
end = start; | |
start = next_start; | |
} | |
const auto token_id = model.at(word.substr(start, end - start)).first; | |
tokens.insert(tokens.begin(), token_id); | |
return std::make_pair(tokens, score); | |
} | |
bool replit_tokenizer_load(replit_tokenizer &tokenizer, std::istream &fin, int max_vocab_size) | |
{ | |
std::string word; | |
std::vector<char> buf(128); | |
for (std::size_t i = 0; i < max_vocab_size; i++) | |
{ | |
uint32_t len; | |
fin.read((char *)&len, sizeof(len)); | |
buf.resize(len); | |
fin.read((char *)buf.data(), len); | |
word.assign(buf.data(), len); | |
float score; | |
fin.read((char *)&score, sizeof(score)); | |
tokenizer.piece_map[word] = std::make_pair(i, -score); | |
tokenizer.raw_vocab.id_to_token[i] = word; | |
} | |
return true; | |
} | |
std::string replace_all(const std::string &str, // where to work | |
const std::string &find, // substitute 'find' | |
const std::string &replace // by 'replace' | |
) | |
{ | |
using namespace std; | |
string result; | |
size_t find_len = find.size(); | |
size_t pos, from = 0; | |
while (string::npos != (pos = str.find(find, from))) | |
{ | |
result.append(str, from, pos - from); | |
result.append(replace); | |
from = pos + find_len; | |
} | |
result.append(str, from, string::npos); | |
return result; | |
} | |
std::string ws_symbol = "\342\226\201"; | |
std::vector<gpt_vocab::id> replit_tokenizer_tokenize(const replit_tokenizer &tokenizer, const std::string &text) | |
{ | |
std::vector<gpt_vocab::id> tokens; | |
auto normalized_text = replace_all(text, " ", ws_symbol); | |
auto tokenized = encode_word(normalized_text, tokenizer.piece_map); | |
return tokenized.first; | |
} | |
// load the model's weights from a file | |
bool replit_model_load(const std::string &fname, replit_model &model, replit_tokenizer &tokenizer) | |
{ | |
auto fin = std::ifstream(fname, std::ios::binary); | |
if (!fin) | |
{ | |
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); | |
return false; | |
} | |
// verify magic | |
{ | |
uint32_t magic; | |
fin.read((char *)&magic, sizeof(magic)); | |
if (magic != 0x67676d6c) | |
{ | |
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); | |
return false; | |
} | |
} | |
// load hparams | |
{ | |
auto &hparams = model.hparams; | |
fin.read((char *)&hparams.d_model, sizeof(hparams.d_model)); | |
fin.read((char *)&hparams.max_seq_len, sizeof(hparams.max_seq_len)); | |
fin.read((char *)&hparams.n_heads, sizeof(hparams.n_heads)); | |
fin.read((char *)&hparams.n_layers, sizeof(hparams.n_layers)); | |
fin.read((char *)&hparams.n_vocab, sizeof(hparams.n_vocab)); | |
fin.read((char *)&hparams.ftype, sizeof(hparams.ftype)); | |
hparams.n_ctx = std::min(hparams.max_seq_len, hparams.n_ctx); | |
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR; | |
hparams.ftype %= GGML_QNT_VERSION_FACTOR; | |
} | |
// load vocab | |
replit_tokenizer_load(tokenizer, fin, model.hparams.n_vocab); | |
// for the big tensors, we have the option to store the data in 16-bit | |
// floats or quantized in order to save memory and also to speed up the | |
// computation | |
ggml_type wtype = ggml_ftype_to_ggml_type((ggml_ftype)(model.hparams.ftype)); | |
if (wtype == GGML_TYPE_COUNT) | |
{ | |
fprintf(stderr, "%s: invalid model file '%s' (bad ftype value %d)\n", __func__, fname.c_str(), | |
model.hparams.ftype); | |
return false; | |
} | |
auto &ctx = model.ctx; | |
size_t ctx_size = 0; | |
{ | |
const auto &hparams = model.hparams; | |
const int n_embd = hparams.d_model; | |
const int n_layer = hparams.n_layers; | |
const int n_ctx = hparams.max_seq_len; | |
const int n_vocab = hparams.n_vocab; | |
ctx_size += n_embd * n_vocab * ggml_type_sizef(wtype); // wte_weight | |
ctx_size += n_embd * ggml_type_sizef(GGML_TYPE_F32); // ln_f_weight | |
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_1_weight | |
ctx_size += n_layer * (3 * n_embd * n_embd * ggml_type_sizef(wtype)); // attn_Wqkv_weight | |
ctx_size += n_layer * (n_embd * n_embd * ggml_type_sizef(wtype)); // attn_out_proj_weight | |
ctx_size += n_layer * (n_embd * ggml_type_sizef(GGML_TYPE_F32)); // ln_2_weight | |
ctx_size += n_layer * (4 * n_embd * n_embd * ggml_type_sizef(wtype)); // mlp_mlp_up_weight | |
ctx_size += n_layer * (n_embd * n_embd * 4 * ggml_type_sizef(wtype)); // mlp_mlp_down_weight | |
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_k | |
ctx_size += n_ctx * n_layer * n_embd * ggml_type_sizef(GGML_TYPE_F16); // memory_v | |
ctx_size += (1 + 6 * n_layer) * 512; // object overhead | |
} | |
// create the ggml context | |
{ | |
struct ggml_init_params params = { | |
/*.mem_size =*/ctx_size, | |
/*.mem_buffer =*/NULL, | |
/*.no_alloc =*/false, | |
}; | |
model.ctx = ggml_init(params); | |
if (!model.ctx) | |
{ | |
fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
return false; | |
} | |
} | |
// prepare memory for the weights | |
{ | |
const auto &hparams = model.hparams; | |
const size_t n_embd = hparams.d_model; | |
const size_t n_layer = hparams.n_layers; | |
const size_t n_vocab = hparams.n_vocab; | |
model.layers.resize(n_layer); | |
model.wte_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab); | |
model.norm_f_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
// map by name | |
model.tensors["transformer.wte.weight"] = model.wte_weight; | |
model.tensors["transformer.norm_f.weight"] = model.norm_f_weight; | |
for (int i = 0; i < (int)n_layer; ++i) | |
{ | |
auto &layer = model.layers[i]; | |
layer.norm_1_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.c_attn_wqkv_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, 3 * n_embd); | |
layer.c_attn_out_proj_weight = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd); | |
layer.norm_2_weight = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd); | |
layer.ffn_up_proj = ggml_new_tensor_2d(ctx, wtype, n_embd, 4 * n_embd); | |
layer.ffn_down_proj = ggml_new_tensor_2d(ctx, wtype, 4 * n_embd, n_embd); | |
// map by name | |
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_1.weight"] = layer.norm_1_weight; | |
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.Wqkv.weight"] = layer.c_attn_wqkv_weight; | |
model.tensors["transformer.blocks." + std::to_string(i) + ".attn.out_proj.weight"] = | |
layer.c_attn_out_proj_weight; | |
model.tensors["transformer.blocks." + std::to_string(i) + ".norm_2.weight"] = layer.norm_2_weight; | |
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.up_proj.weight"] = layer.ffn_up_proj; | |
model.tensors["transformer.blocks." + std::to_string(i) + ".ffn.down_proj.weight"] = layer.ffn_down_proj; | |
} | |
} | |
// key + value memory | |
{ | |
const auto &hparams = model.hparams; | |
const int n_embd = hparams.d_model; | |
const int n_layer = hparams.n_layers; | |
const int n_ctx = hparams.max_seq_len; | |
const int64_t n_mem = n_layer * n_ctx; | |
const int64_t n_elements = n_embd * n_mem; | |
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v); | |
} | |
// load weights | |
{ | |
while (true) | |
{ | |
int32_t n_dims; | |
int32_t length; | |
int32_t ttype; | |
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
fin.read(reinterpret_cast<char *>(&length), sizeof(length)); | |
fin.read(reinterpret_cast<char *>(&ttype), sizeof(ttype)); | |
if (fin.eof()) | |
{ | |
break; | |
} | |
int32_t nelements = 1; | |
int32_t ne[2] = {1, 1}; | |
for (int i = 0; i < n_dims; ++i) | |
{ | |
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
nelements *= ne[i]; | |
} | |
std::string name(length, 0); | |
fin.read(&name[0], length); | |
if (model.tensors.find(name.data()) == model.tensors.end()) | |
{ | |
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); | |
return false; | |
} | |
auto tensor = model.tensors[name.data()]; | |
if (ggml_nelements(tensor) != nelements) | |
{ | |
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); | |
return false; | |
} | |
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) | |
{ | |
fprintf(stderr, | |
"%s: tensor '%s' has wrong shape in model file: got [%5d, " | |
"%5d], expected [%5d, %5d]\n", | |
__func__, name.data(), (int)tensor->ne[0], (int)tensor->ne[1], ne[0], ne[1]); | |
return false; | |
} | |
// for debugging | |
if (0) | |
{ | |
printf("%24s - [%5d, %5d], type = %6s, %6.2f MB, %9zu bytes\n", name.data(), ne[0], ne[1], | |
ggml_type_name(ggml_type(ttype)), ggml_nbytes(tensor) / 1024.0 / 1024.0, ggml_nbytes(tensor)); | |
} | |
const size_t bpe = ggml_type_size(ggml_type(ttype)); | |
if ((nelements * bpe) / ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) | |
{ | |
fprintf(stderr, | |
"%s: tensor '%s' has wrong size in model file: got %zu, " | |
"expected %zu\n", | |
__func__, name.data(), ggml_nbytes(tensor), nelements * bpe); | |
return false; | |
} | |
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); | |
} | |
} | |
fin.close(); | |
return true; | |
} | |
// evaluate the transformer | |
// | |
// - model: the model | |
// - n_threads: number of threads to use | |
// - n_past: the context size so far | |
// - embd_inp: the embeddings of the tokens in the context | |
// - embd_w: the predicted logits for the next token | |
// | |
bool replit_eval(const replit_model &model, const int n_threads, const int n_past, | |
const std::vector<gpt_vocab::id> &embd_inp, | |
std::vector<float> &embd_w, size_t &mem_per_token) | |
{ | |
const bool logits_all = false; | |
const int N = embd_inp.size(); | |
const auto &hparams = model.hparams; | |
const int n_embd = hparams.d_model; | |
const int n_layer = hparams.n_layers; | |
const int n_head = hparams.n_heads; | |
const int n_vocab = hparams.n_vocab; | |
const int n_ctx = hparams.max_seq_len; | |
static size_t buf_size = 256u * 1024 * 1024; | |
static void *buf = malloc(buf_size); | |
if (mem_per_token > 0 && mem_per_token * N > buf_size) | |
{ | |
const size_t buf_size_new = 1.1 * (mem_per_token * N); // add 10% to account for ggml object overhead | |
// printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, | |
// buf_size, buf_size_new); | |
// reallocate | |
buf_size = buf_size_new; | |
buf = realloc(buf, buf_size); | |
if (buf == nullptr) | |
{ | |
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size); | |
return false; | |
} | |
} | |
struct ggml_init_params params = { | |
/*.mem_size =*/buf_size, | |
/*.mem_buffer =*/buf, | |
/*.no_alloc =*/false, | |
}; | |
struct ggml_context *ctx0 = ggml_init(params); | |
struct ggml_cgraph gf = {}; | |
gf.n_threads = n_threads; | |
struct ggml_tensor *embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
memcpy(embd->data, embd_inp.data(), N * ggml_element_size(embd)); | |
struct ggml_tensor *inpL = ggml_get_rows(ctx0, model.wte_weight, embd); | |
for (int il = 0; il < n_layer; ++il) | |
{ | |
struct ggml_tensor *cur; | |
// a = self.ln_1(x) | |
{ | |
cur = ggml_norm(ctx0, inpL); | |
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_1_weight, cur), cur); | |
} | |
// self-attention | |
// b, _, past_key_value = self.attn(a, past_key_value=past_key_value, | |
// attn_bias=attn_bias, attention_mask=attention_mask, | |
// is_causal=is_causal) | |
{ | |
// compute QKV | |
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_wqkv_weight, cur); | |
struct ggml_tensor *Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0 * sizeof(float) * n_embd); | |
struct ggml_tensor *Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1 * sizeof(float) * n_embd); | |
struct ggml_tensor *Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2 * sizeof(float) * n_embd); | |
// store key and value to memory | |
{ | |
struct ggml_tensor *k = | |
ggml_view_1d(ctx0, model.memory_k, N * n_embd, | |
(ggml_element_size(model.memory_k) * n_embd) * (il * n_ctx + n_past)); | |
struct ggml_tensor *v = | |
ggml_view_1d(ctx0, model.memory_v, N * n_embd, | |
(ggml_element_size(model.memory_v) * n_embd) * (il * n_ctx + n_past)); | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k)); | |
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v)); | |
} | |
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, | |
// 2, 1, 3) [64, N, 12] | |
struct ggml_tensor *Q = ggml_permute( | |
ctx0, ggml_cpy(ctx0, Qcur, ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd / n_head, n_head, N)), 0, 2, | |
1, 3); | |
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, | |
// 3) [64, n_past + N, 12] | |
struct ggml_tensor *K = | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, model.memory_k, (n_past + N) * n_embd, | |
il * n_ctx * ggml_element_size(model.memory_k) * n_embd), | |
n_embd / n_head, n_head, n_past + N), | |
0, 2, 1, 3); | |
// K * Q | |
struct ggml_tensor *KQ = ggml_mul_mat(ctx0, K, Q); | |
// KQ_scaled = KQ / sqrt(n_embd/n_head) | |
struct ggml_tensor *KQ_scaled = | |
ggml_scale(ctx0, KQ, ggml_new_f32(ctx0, 1.0f / sqrt(float(n_embd) / n_head))); | |
struct ggml_tensor *KQ_scaled_alibi = ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8.0f); | |
// KQ_masked = mask_past(KQ_scaled) | |
struct ggml_tensor *KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past); | |
// KQ = soft_max(KQ_masked) | |
struct ggml_tensor *KQ_soft_max = ggml_soft_max(ctx0, KQ_masked); | |
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, | |
// 2, 0, 3).contiguous() [n_past + N, 64, 12] | |
struct ggml_tensor *V_trans = ggml_cpy( | |
ctx0, | |
ggml_permute(ctx0, | |
ggml_reshape_3d(ctx0, | |
ggml_view_1d(ctx0, model.memory_v, (n_past + N) * n_embd, | |
il * n_ctx * ggml_element_size(model.memory_v) * n_embd), | |
n_embd / n_head, n_head, n_past + N), | |
1, 2, 0, 3), | |
ggml_new_tensor_3d(ctx0, model.memory_v->type, n_past + N, n_embd / n_head, n_head)); | |
// KQV = transpose(V) * KQ_soft_max | |
struct ggml_tensor *KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max); | |
// KQV_merged = KQV.permute(0, 2, 1, 3) | |
struct ggml_tensor *KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3); | |
// cur = KQV_merged.contiguous().view(n_embd, N) | |
cur = ggml_cpy(ctx0, KQV_merged, ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N)); | |
// projection | |
{ | |
cur = ggml_mul_mat(ctx0, model.layers[il].c_attn_out_proj_weight, cur); | |
} | |
} | |
inpL = ggml_add(ctx0, inpL, cur); | |
// m = self.ln_2(x) | |
{ | |
cur = ggml_norm(ctx0, inpL); | |
cur = ggml_mul(ctx0, ggml_repeat(ctx0, model.layers[il].norm_2_weight, cur), cur); | |
} | |
// n = self.mlp(m) | |
{ | |
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_up_proj, cur); | |
// GELU activation | |
cur = ggml_gelu(ctx0, cur); | |
// projection | |
// cur = proj_w*cur + proj_b | |
cur = ggml_mul_mat(ctx0, model.layers[il].ffn_down_proj, cur); | |
} | |
// x = x + n | |
inpL = ggml_add(ctx0, inpL, cur); | |
} | |
// norm | |
{ | |
inpL = ggml_norm(ctx0, inpL); | |
// inpL = ln_f_g*inpL | |
inpL = ggml_mul(ctx0, ggml_repeat(ctx0, model.norm_f_weight, inpL), inpL); | |
} | |
// output embedding weight tied to input embedding | |
inpL = ggml_mul_mat(ctx0, model.wte_weight, inpL); | |
// run the computation | |
ggml_build_forward_expand(&gf, inpL); | |
ggml_graph_compute(ctx0, &gf); | |
if (logits_all) | |
{ | |
// return result for all tokens | |
embd_w.resize(n_vocab * N); | |
memcpy(embd_w.data(), (float *)ggml_get_data(inpL), sizeof(float) * n_vocab * N); | |
} | |
else | |
{ | |
// return result for just the last token | |
embd_w.resize(n_vocab); | |
memcpy(embd_w.data(), (float *)ggml_get_data(inpL) + (n_vocab * (N - 1)), sizeof(float) * n_vocab); | |
} | |
if (mem_per_token == 0) | |
{ | |
mem_per_token = ggml_used_mem(ctx0) / N; | |
} | |
// printf("used_mem = %zu\n", ggml_used_mem(ctx0)); | |
ggml_free(ctx0); | |
return true; | |
} | |
class replit_llm : public LLM | |
{ | |
public: | |
virtual ~replit_llm() | |
{ | |
if (model_.ctx != nullptr) | |
{ | |
ggml_free(model_.ctx); | |
} | |
} | |
std::vector<gpt_vocab::id> Tokenize(const std::string &text) const override | |
{ | |
// tokenize the prompt | |
std::vector<gpt_vocab::id> embd_inp = replit_tokenizer_tokenize(replit_tokenizer_, text); | |
return embd_inp; | |
} | |
const std::string &Detokenize(const gpt_vocab::id id) const override | |
{ | |
const auto it = replit_tokenizer_.raw_vocab.id_to_token.find(id); | |
if (it == replit_tokenizer_.raw_vocab.id_to_token.end()) | |
{ | |
return kEmptyString; | |
} | |
current_word_ = replace_all(replit_tokenizer_.raw_vocab.id_to_token.at(id), ws_symbol, " "); | |
return current_word_; | |
} | |
bool IsEosToken(const gpt_vocab::id token) const override | |
{ | |
if (token == EosToken()) | |
{ | |
return true; | |
} | |
// Handle special tokens in StarChat and Dolly V2. | |
if (!replit_tokenizer_.raw_vocab.special_tokens.empty()) | |
{ | |
const std::string &text = Detokenize(token); | |
return text == "<|end|>" || text == "### End"; | |
} | |
return false; | |
} | |
gpt_vocab::id EosToken() const override | |
{ | |
const auto it = replit_tokenizer_.raw_vocab.token_to_id.find("<|endoftext|>"); | |
if (it != replit_tokenizer_.raw_vocab.token_to_id.end()) | |
{ | |
return it->second; | |
} | |
return 0; | |
} | |
int VocabSize() const override { return replit_tokenizer_.raw_vocab.id_to_token.size(); } | |
gpt_vocab::id Sample(const int top_k, const float top_p, | |
const float temperature, | |
const float repetition_penalty, | |
int last_n_tokens, int seed) const override | |
{ | |
if (logits_.empty()) | |
{ | |
return EosToken(); | |
} | |
if (last_n_tokens < 0) | |
{ | |
last_n_tokens = ContextLength(); | |
} | |
if (seed < 0) | |
{ | |
seed = time(nullptr); | |
} | |
std::mt19937 rng(seed); | |
std::unordered_set<gpt_vocab::id> recent_tokens; | |
if (repetition_penalty != 1.0f) | |
{ | |
recent_tokens = previous_tokens_.GetRecent(last_n_tokens); | |
} | |
return gpt_sample_top_k_top_p( | |
replit_tokenizer_.raw_vocab, logits_.data() + (logits_.size() - VocabSize()), top_k, top_p, | |
temperature, repetition_penalty, recent_tokens, rng); | |
} | |
protected: | |
replit_tokenizer replit_tokenizer_; | |
bool Load(const std::string &filename, const int context_length, | |
const int gpu_layers) override | |
{ | |
if (context_length > 0) | |
{ | |
model_.hparams.n_ctx = context_length; | |
} | |
if (!replit_model_load(filename, model_, replit_tokenizer_)) | |
{ | |
return false; | |
} | |
n_ctx_ = model_.hparams.n_ctx; | |
return true; | |
} | |
bool Eval(const std::vector<gpt_vocab::id> &tokens, const int threads, | |
const int n_past) override | |
{ | |
return replit_eval(model_, threads, n_past, tokens, logits_, | |
mem_per_token_); | |
} | |
private: | |
replit_model model_; | |
mutable std::string current_word_; | |
}; | |