Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- requirements.txt +23 -0
- utils_mask.py +167 -0
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.36.2
|
2 |
+
torch==2.0.1
|
3 |
+
torchvision==0.15.2
|
4 |
+
torchaudio==2.0.2
|
5 |
+
numpy==1.24.4
|
6 |
+
scipy==1.10.1
|
7 |
+
scikit-image==0.21.0
|
8 |
+
opencv-python==4.7.0.72
|
9 |
+
pillow==9.4.0
|
10 |
+
diffusers==0.25.0
|
11 |
+
transformers==4.36.2
|
12 |
+
accelerate==0.26.1
|
13 |
+
matplotlib==3.7.4
|
14 |
+
tqdm==4.64.1
|
15 |
+
config==0.5.1
|
16 |
+
einops==0.7.0
|
17 |
+
onnxruntime==1.16.2
|
18 |
+
basicsr
|
19 |
+
av
|
20 |
+
fvcore
|
21 |
+
cloudpickle
|
22 |
+
omegaconf
|
23 |
+
pycocotools
|
utils_mask.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import cv2
|
3 |
+
from PIL import Image, ImageDraw
|
4 |
+
|
5 |
+
label_map = {
|
6 |
+
"background": 0,
|
7 |
+
"hat": 1,
|
8 |
+
"hair": 2,
|
9 |
+
"sunglasses": 3,
|
10 |
+
"upper_clothes": 4,
|
11 |
+
"skirt": 5,
|
12 |
+
"pants": 6,
|
13 |
+
"dress": 7,
|
14 |
+
"belt": 8,
|
15 |
+
"left_shoe": 9,
|
16 |
+
"right_shoe": 10,
|
17 |
+
"head": 11,
|
18 |
+
"left_leg": 12,
|
19 |
+
"right_leg": 13,
|
20 |
+
"left_arm": 14,
|
21 |
+
"right_arm": 15,
|
22 |
+
"bag": 16,
|
23 |
+
"scarf": 17,
|
24 |
+
}
|
25 |
+
|
26 |
+
def extend_arm_mask(wrist, elbow, scale):
|
27 |
+
wrist = elbow + scale * (wrist - elbow)
|
28 |
+
return wrist
|
29 |
+
|
30 |
+
def hole_fill(img):
|
31 |
+
img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
|
32 |
+
img_copy = img.copy()
|
33 |
+
mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
|
34 |
+
|
35 |
+
cv2.floodFill(img, mask, (0, 0), 255)
|
36 |
+
img_inverse = cv2.bitwise_not(img)
|
37 |
+
dst = cv2.bitwise_or(img_copy, img_inverse)
|
38 |
+
return dst
|
39 |
+
|
40 |
+
def refine_mask(mask):
|
41 |
+
contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
|
42 |
+
cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
|
43 |
+
area = []
|
44 |
+
for j in range(len(contours)):
|
45 |
+
a_d = cv2.contourArea(contours[j], True)
|
46 |
+
area.append(abs(a_d))
|
47 |
+
refine_mask = np.zeros_like(mask).astype(np.uint8)
|
48 |
+
if len(area) != 0:
|
49 |
+
i = area.index(max(area))
|
50 |
+
cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
|
51 |
+
|
52 |
+
return refine_mask
|
53 |
+
|
54 |
+
def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384,height=512):
|
55 |
+
im_parse = model_parse.resize((width, height), Image.NEAREST)
|
56 |
+
parse_array = np.array(im_parse)
|
57 |
+
|
58 |
+
if model_type == 'hd':
|
59 |
+
arm_width = 60
|
60 |
+
elif model_type == 'dc':
|
61 |
+
arm_width = 45
|
62 |
+
else:
|
63 |
+
raise ValueError("model_type must be \'hd\' or \'dc\'!")
|
64 |
+
|
65 |
+
parse_head = (parse_array == 1).astype(np.float32) + \
|
66 |
+
(parse_array == 3).astype(np.float32) + \
|
67 |
+
(parse_array == 11).astype(np.float32)
|
68 |
+
|
69 |
+
parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
|
70 |
+
(parse_array == label_map["right_shoe"]).astype(np.float32) + \
|
71 |
+
(parse_array == label_map["hat"]).astype(np.float32) + \
|
72 |
+
(parse_array == label_map["sunglasses"]).astype(np.float32) + \
|
73 |
+
(parse_array == label_map["bag"]).astype(np.float32)
|
74 |
+
|
75 |
+
parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
|
76 |
+
|
77 |
+
arms_left = (parse_array == 14).astype(np.float32)
|
78 |
+
arms_right = (parse_array == 15).astype(np.float32)
|
79 |
+
|
80 |
+
if category == 'dresses':
|
81 |
+
parse_mask = (parse_array == 7).astype(np.float32) + \
|
82 |
+
(parse_array == 4).astype(np.float32) + \
|
83 |
+
(parse_array == 5).astype(np.float32) + \
|
84 |
+
(parse_array == 6).astype(np.float32)
|
85 |
+
|
86 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
87 |
+
|
88 |
+
elif category == 'upper_body':
|
89 |
+
parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
|
90 |
+
parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
|
91 |
+
(parse_array == label_map["pants"]).astype(np.float32)
|
92 |
+
parser_mask_fixed += parser_mask_fixed_lower_cloth
|
93 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
94 |
+
elif category == 'lower_body':
|
95 |
+
parse_mask = (parse_array == 6).astype(np.float32) + \
|
96 |
+
(parse_array == 12).astype(np.float32) + \
|
97 |
+
(parse_array == 13).astype(np.float32) + \
|
98 |
+
(parse_array == 5).astype(np.float32)
|
99 |
+
parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
|
100 |
+
(parse_array == 14).astype(np.float32) + \
|
101 |
+
(parse_array == 15).astype(np.float32)
|
102 |
+
parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
|
103 |
+
else:
|
104 |
+
raise NotImplementedError
|
105 |
+
|
106 |
+
# Load pose points
|
107 |
+
pose_data = keypoint["pose_keypoints_2d"]
|
108 |
+
pose_data = np.array(pose_data)
|
109 |
+
pose_data = pose_data.reshape((-1, 2))
|
110 |
+
|
111 |
+
im_arms_left = Image.new('L', (width, height))
|
112 |
+
im_arms_right = Image.new('L', (width, height))
|
113 |
+
arms_draw_left = ImageDraw.Draw(im_arms_left)
|
114 |
+
arms_draw_right = ImageDraw.Draw(im_arms_right)
|
115 |
+
if category == 'dresses' or category == 'upper_body':
|
116 |
+
shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
|
117 |
+
shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
|
118 |
+
elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
|
119 |
+
elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
|
120 |
+
wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
|
121 |
+
wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
|
122 |
+
ARM_LINE_WIDTH = int(arm_width / 512 * height)
|
123 |
+
size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
|
124 |
+
size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
|
125 |
+
shoulder_right[1] + ARM_LINE_WIDTH // 2]
|
126 |
+
|
127 |
+
|
128 |
+
if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
|
129 |
+
im_arms_right = arms_right
|
130 |
+
else:
|
131 |
+
wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
|
132 |
+
arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
133 |
+
arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)
|
134 |
+
|
135 |
+
if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
|
136 |
+
im_arms_left = arms_left
|
137 |
+
else:
|
138 |
+
wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
|
139 |
+
arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
|
140 |
+
arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
|
141 |
+
|
142 |
+
hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
|
143 |
+
hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
|
144 |
+
parser_mask_fixed += hands_left + hands_right
|
145 |
+
|
146 |
+
parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
|
147 |
+
parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
|
148 |
+
if category == 'dresses' or category == 'upper_body':
|
149 |
+
neck_mask = (parse_array == 18).astype(np.float32)
|
150 |
+
neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
|
151 |
+
neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
|
152 |
+
parse_mask = np.logical_or(parse_mask, neck_mask)
|
153 |
+
arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
|
154 |
+
parse_mask += np.logical_or(parse_mask, arm_mask)
|
155 |
+
|
156 |
+
parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
|
157 |
+
|
158 |
+
parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
|
159 |
+
inpaint_mask = 1 - parse_mask_total
|
160 |
+
img = np.where(inpaint_mask, 255, 0)
|
161 |
+
dst = hole_fill(img.astype(np.uint8))
|
162 |
+
dst = refine_mask(dst)
|
163 |
+
inpaint_mask = dst / 255 * 1
|
164 |
+
mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
|
165 |
+
mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
|
166 |
+
|
167 |
+
return mask, mask_gray
|