ML-Motivators commited on
Commit
84d57b3
·
verified ·
1 Parent(s): 83f0753

Upload 2 files

Browse files
Files changed (2) hide show
  1. requirements.txt +23 -0
  2. utils_mask.py +167 -0
requirements.txt ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ transformers==4.36.2
2
+ torch==2.0.1
3
+ torchvision==0.15.2
4
+ torchaudio==2.0.2
5
+ numpy==1.24.4
6
+ scipy==1.10.1
7
+ scikit-image==0.21.0
8
+ opencv-python==4.7.0.72
9
+ pillow==9.4.0
10
+ diffusers==0.25.0
11
+ transformers==4.36.2
12
+ accelerate==0.26.1
13
+ matplotlib==3.7.4
14
+ tqdm==4.64.1
15
+ config==0.5.1
16
+ einops==0.7.0
17
+ onnxruntime==1.16.2
18
+ basicsr
19
+ av
20
+ fvcore
21
+ cloudpickle
22
+ omegaconf
23
+ pycocotools
utils_mask.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ from PIL import Image, ImageDraw
4
+
5
+ label_map = {
6
+ "background": 0,
7
+ "hat": 1,
8
+ "hair": 2,
9
+ "sunglasses": 3,
10
+ "upper_clothes": 4,
11
+ "skirt": 5,
12
+ "pants": 6,
13
+ "dress": 7,
14
+ "belt": 8,
15
+ "left_shoe": 9,
16
+ "right_shoe": 10,
17
+ "head": 11,
18
+ "left_leg": 12,
19
+ "right_leg": 13,
20
+ "left_arm": 14,
21
+ "right_arm": 15,
22
+ "bag": 16,
23
+ "scarf": 17,
24
+ }
25
+
26
+ def extend_arm_mask(wrist, elbow, scale):
27
+ wrist = elbow + scale * (wrist - elbow)
28
+ return wrist
29
+
30
+ def hole_fill(img):
31
+ img = np.pad(img[1:-1, 1:-1], pad_width = 1, mode = 'constant', constant_values=0)
32
+ img_copy = img.copy()
33
+ mask = np.zeros((img.shape[0] + 2, img.shape[1] + 2), dtype=np.uint8)
34
+
35
+ cv2.floodFill(img, mask, (0, 0), 255)
36
+ img_inverse = cv2.bitwise_not(img)
37
+ dst = cv2.bitwise_or(img_copy, img_inverse)
38
+ return dst
39
+
40
+ def refine_mask(mask):
41
+ contours, hierarchy = cv2.findContours(mask.astype(np.uint8),
42
+ cv2.RETR_CCOMP, cv2.CHAIN_APPROX_TC89_L1)
43
+ area = []
44
+ for j in range(len(contours)):
45
+ a_d = cv2.contourArea(contours[j], True)
46
+ area.append(abs(a_d))
47
+ refine_mask = np.zeros_like(mask).astype(np.uint8)
48
+ if len(area) != 0:
49
+ i = area.index(max(area))
50
+ cv2.drawContours(refine_mask, contours, i, color=255, thickness=-1)
51
+
52
+ return refine_mask
53
+
54
+ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint: dict, width=384,height=512):
55
+ im_parse = model_parse.resize((width, height), Image.NEAREST)
56
+ parse_array = np.array(im_parse)
57
+
58
+ if model_type == 'hd':
59
+ arm_width = 60
60
+ elif model_type == 'dc':
61
+ arm_width = 45
62
+ else:
63
+ raise ValueError("model_type must be \'hd\' or \'dc\'!")
64
+
65
+ parse_head = (parse_array == 1).astype(np.float32) + \
66
+ (parse_array == 3).astype(np.float32) + \
67
+ (parse_array == 11).astype(np.float32)
68
+
69
+ parser_mask_fixed = (parse_array == label_map["left_shoe"]).astype(np.float32) + \
70
+ (parse_array == label_map["right_shoe"]).astype(np.float32) + \
71
+ (parse_array == label_map["hat"]).astype(np.float32) + \
72
+ (parse_array == label_map["sunglasses"]).astype(np.float32) + \
73
+ (parse_array == label_map["bag"]).astype(np.float32)
74
+
75
+ parser_mask_changeable = (parse_array == label_map["background"]).astype(np.float32)
76
+
77
+ arms_left = (parse_array == 14).astype(np.float32)
78
+ arms_right = (parse_array == 15).astype(np.float32)
79
+
80
+ if category == 'dresses':
81
+ parse_mask = (parse_array == 7).astype(np.float32) + \
82
+ (parse_array == 4).astype(np.float32) + \
83
+ (parse_array == 5).astype(np.float32) + \
84
+ (parse_array == 6).astype(np.float32)
85
+
86
+ parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
87
+
88
+ elif category == 'upper_body':
89
+ parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
90
+ parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
91
+ (parse_array == label_map["pants"]).astype(np.float32)
92
+ parser_mask_fixed += parser_mask_fixed_lower_cloth
93
+ parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
94
+ elif category == 'lower_body':
95
+ parse_mask = (parse_array == 6).astype(np.float32) + \
96
+ (parse_array == 12).astype(np.float32) + \
97
+ (parse_array == 13).astype(np.float32) + \
98
+ (parse_array == 5).astype(np.float32)
99
+ parser_mask_fixed += (parse_array == label_map["upper_clothes"]).astype(np.float32) + \
100
+ (parse_array == 14).astype(np.float32) + \
101
+ (parse_array == 15).astype(np.float32)
102
+ parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
103
+ else:
104
+ raise NotImplementedError
105
+
106
+ # Load pose points
107
+ pose_data = keypoint["pose_keypoints_2d"]
108
+ pose_data = np.array(pose_data)
109
+ pose_data = pose_data.reshape((-1, 2))
110
+
111
+ im_arms_left = Image.new('L', (width, height))
112
+ im_arms_right = Image.new('L', (width, height))
113
+ arms_draw_left = ImageDraw.Draw(im_arms_left)
114
+ arms_draw_right = ImageDraw.Draw(im_arms_right)
115
+ if category == 'dresses' or category == 'upper_body':
116
+ shoulder_right = np.multiply(tuple(pose_data[2][:2]), height / 512.0)
117
+ shoulder_left = np.multiply(tuple(pose_data[5][:2]), height / 512.0)
118
+ elbow_right = np.multiply(tuple(pose_data[3][:2]), height / 512.0)
119
+ elbow_left = np.multiply(tuple(pose_data[6][:2]), height / 512.0)
120
+ wrist_right = np.multiply(tuple(pose_data[4][:2]), height / 512.0)
121
+ wrist_left = np.multiply(tuple(pose_data[7][:2]), height / 512.0)
122
+ ARM_LINE_WIDTH = int(arm_width / 512 * height)
123
+ size_left = [shoulder_left[0] - ARM_LINE_WIDTH // 2, shoulder_left[1] - ARM_LINE_WIDTH // 2, shoulder_left[0] + ARM_LINE_WIDTH // 2, shoulder_left[1] + ARM_LINE_WIDTH // 2]
124
+ size_right = [shoulder_right[0] - ARM_LINE_WIDTH // 2, shoulder_right[1] - ARM_LINE_WIDTH // 2, shoulder_right[0] + ARM_LINE_WIDTH // 2,
125
+ shoulder_right[1] + ARM_LINE_WIDTH // 2]
126
+
127
+
128
+ if wrist_right[0] <= 1. and wrist_right[1] <= 1.:
129
+ im_arms_right = arms_right
130
+ else:
131
+ wrist_right = extend_arm_mask(wrist_right, elbow_right, 1.2)
132
+ arms_draw_right.line(np.concatenate((shoulder_right, elbow_right, wrist_right)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
133
+ arms_draw_right.arc(size_right, 0, 360, 'white', ARM_LINE_WIDTH // 2)
134
+
135
+ if wrist_left[0] <= 1. and wrist_left[1] <= 1.:
136
+ im_arms_left = arms_left
137
+ else:
138
+ wrist_left = extend_arm_mask(wrist_left, elbow_left, 1.2)
139
+ arms_draw_left.line(np.concatenate((wrist_left, elbow_left, shoulder_left)).astype(np.uint16).tolist(), 'white', ARM_LINE_WIDTH, 'curve')
140
+ arms_draw_left.arc(size_left, 0, 360, 'white', ARM_LINE_WIDTH // 2)
141
+
142
+ hands_left = np.logical_and(np.logical_not(im_arms_left), arms_left)
143
+ hands_right = np.logical_and(np.logical_not(im_arms_right), arms_right)
144
+ parser_mask_fixed += hands_left + hands_right
145
+
146
+ parser_mask_fixed = np.logical_or(parser_mask_fixed, parse_head)
147
+ parse_mask = cv2.dilate(parse_mask, np.ones((5, 5), np.uint16), iterations=5)
148
+ if category == 'dresses' or category == 'upper_body':
149
+ neck_mask = (parse_array == 18).astype(np.float32)
150
+ neck_mask = cv2.dilate(neck_mask, np.ones((5, 5), np.uint16), iterations=1)
151
+ neck_mask = np.logical_and(neck_mask, np.logical_not(parse_head))
152
+ parse_mask = np.logical_or(parse_mask, neck_mask)
153
+ arm_mask = cv2.dilate(np.logical_or(im_arms_left, im_arms_right).astype('float32'), np.ones((5, 5), np.uint16), iterations=4)
154
+ parse_mask += np.logical_or(parse_mask, arm_mask)
155
+
156
+ parse_mask = np.logical_and(parser_mask_changeable, np.logical_not(parse_mask))
157
+
158
+ parse_mask_total = np.logical_or(parse_mask, parser_mask_fixed)
159
+ inpaint_mask = 1 - parse_mask_total
160
+ img = np.where(inpaint_mask, 255, 0)
161
+ dst = hole_fill(img.astype(np.uint8))
162
+ dst = refine_mask(dst)
163
+ inpaint_mask = dst / 255 * 1
164
+ mask = Image.fromarray(inpaint_mask.astype(np.uint8) * 255)
165
+ mask_gray = Image.fromarray(inpaint_mask.astype(np.uint8) * 127)
166
+
167
+ return mask, mask_gray