ML-Motivators commited on
Commit
8a13254
·
verified ·
1 Parent(s): 0f0669b

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -242
app.py DELETED
@@ -1,242 +0,0 @@
1
- import gradio as gr
2
- import spaces
3
- import torch
4
- from PIL import Image
5
-
6
- from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
7
- from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
8
- from src.unet_hacked_tryon import UNet2DConditionModel
9
- from transformers import (
10
- CLIPImageProcessor,
11
- CLIPVisionModelWithProjection,
12
- CLIPTextModel,
13
- CLIPTextModelWithProjection,
14
- )
15
- from diffusers import DDPMScheduler, AutoencoderKL
16
- from typing import List
17
-
18
- import os
19
- from transformers import AutoTokenizer
20
- import numpy as np
21
- from utils_mask import get_mask_location
22
- from torchvision import transforms
23
- import apply_net
24
- from preprocess.humanparsing.run_parsing import Parsing
25
- from preprocess.openpose.run_openpose import OpenPose
26
- from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
27
- from torchvision.transforms.functional import to_pil_image
28
-
29
- # Function to convert PIL image to binary mask
30
- def pil_to_binary_mask(pil_image, threshold=0):
31
- np_image = np.array(pil_image)
32
- grayscale_image = Image.fromarray(np_image).convert("L")
33
- binary_mask = np.array(grayscale_image) > threshold
34
- mask = np.zeros(binary_mask.shape, dtype=np.uint8)
35
- for i in range(binary_mask.shape[0]):
36
- for j in range(binary_mask.shape[1]):
37
- if binary_mask[i, j]:
38
- mask[i, j] = 1
39
- mask = (mask * 255).astype(np.uint8)
40
- output_mask = Image.fromarray(mask)
41
- return output_mask
42
-
43
- # Base path setup
44
- base_path = 'yisol/IDM-VTON'
45
- example_path = os.path.join(os.path.dirname(__file__), 'example')
46
-
47
- # Model loading
48
- unet = UNet2DConditionModel.from_pretrained(
49
- base_path,
50
- subfolder="unet",
51
- torch_dtype=torch.float16,
52
- )
53
- unet.requires_grad_(False)
54
- tokenizer_one = AutoTokenizer.from_pretrained(
55
- base_path,
56
- subfolder="tokenizer",
57
- use_fast=False,
58
- )
59
- tokenizer_two = AutoTokenizer.from_pretrained(
60
- base_path,
61
- subfolder="tokenizer_2",
62
- use_fast=False,
63
- )
64
- noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
-
66
- text_encoder_one = CLIPTextModel.from_pretrained(
67
- base_path,
68
- subfolder="text_encoder",
69
- torch_dtype=torch.float16,
70
- )
71
- text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
- base_path,
73
- subfolder="text_encoder_2",
74
- torch_dtype=torch.float16,
75
- )
76
- image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
- base_path,
78
- subfolder="image_encoder",
79
- torch_dtype=torch.float16,
80
- )
81
- vae = AutoencoderKL.from_pretrained(base_path,
82
- subfolder="vae",
83
- torch_dtype=torch.float16,
84
- )
85
-
86
- # "stabilityai/stable-diffusion-xl-base-1.0",
87
- UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
- base_path,
89
- subfolder="unet_encoder",
90
- torch_dtype=torch.float16,
91
- )
92
-
93
- parsing_model = Parsing(0)
94
- openpose_model = OpenPose(0)
95
-
96
- UNet_Encoder.requires_grad_(False)
97
- image_encoder.requires_grad_(False)
98
- vae.requires_grad_(False)
99
- unet.requires_grad_(False)
100
- text_encoder_one.requires_grad_(False)
101
- text_encoder_two.requires_grad_(False)
102
- tensor_transfrom = transforms.Compose(
103
- [
104
- transforms.ToTensor(),
105
- transforms.Normalize([0.5], [0.5]),
106
- ]
107
- )
108
-
109
- # Tryon pipeline setup
110
- pipe = TryonPipeline.from_pretrained(
111
- base_path,
112
- unet=unet,
113
- vae=vae,
114
- feature_extractor=CLIPImageProcessor(),
115
- text_encoder=text_encoder_one,
116
- text_encoder_2=text_encoder_two,
117
- tokenizer=tokenizer_one,
118
- tokenizer_2=tokenizer_two,
119
- scheduler=noise_scheduler,
120
- image_encoder=image_encoder,
121
- torch_dtype=torch.float16,
122
- )
123
- pipe.unet_encoder = UNet_Encoder
124
-
125
- # Start try-on function
126
- @spaces.GPU
127
- def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
128
- device = "cuda"
129
-
130
- openpose_model.preprocessor.body_estimation.model.to(device)
131
- pipe.to(device)
132
- pipe.unet_encoder.to(device)
133
-
134
- garm_img = garm_img.convert("RGB").resize((768, 1024))
135
- human_img_orig = dict["background"].convert("RGB")
136
-
137
- if is_checked_crop:
138
- width, height = human_img_orig.size
139
- target_width = int(min(width, height * (3 / 4)))
140
- target_height = int(min(height, width * (4 / 3)))
141
- left = (width - target_width) / 2
142
- top = (height - target_height) / 2
143
- right = (width + target_width) / 2
144
- bottom = (height + target_height) / 2
145
- cropped_img = human_img_orig.crop((left, top, right, bottom))
146
- crop_size = cropped_img.size
147
- human_img = cropped_img.resize((768, 1024))
148
- else:
149
- human_img = human_img_orig.resize((768, 1024))
150
-
151
- if is_checked:
152
- keypoints = openpose_model(human_img.resize((384, 512)))
153
- model_parse, _ = parsing_model(human_img.resize((384, 512)))
154
- mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
155
- mask = mask.resize((768, 1024))
156
- else:
157
- mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
158
- mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
159
- mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
160
-
161
- human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
162
- human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
163
-
164
- args = apply_net.create_argument_parser().parse_args(
165
- ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
166
- )
167
- pose_img = args.func(args, human_img_arg)
168
- pose_img = pose_img[:, :, ::-1]
169
- pose_img = Image.fromarray(pose_img).resize((768, 1024))
170
-
171
- with torch.no_grad():
172
- with torch.cuda.amp.autocast():
173
- with torch.no_grad():
174
- prompt = "model is wearing " + garment_des
175
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
176
- with torch.inference_mode():
177
- (
178
- prompt_embeds,
179
- negative_prompt_embeds,
180
- pooled_prompt_embeds,
181
- negative_pooled_prompt_embeds,
182
- ) = pipe.encode_prompt(
183
- prompt,
184
- num_images_per_prompt=1,
185
- do_classifier_free_guidance=True,
186
- negative_prompt=negative_prompt,
187
- )
188
-
189
- prompt = "a photo of " + garment_des
190
- negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
191
- if not isinstance(prompt, List):
192
- prompt = [prompt] * 1
193
- if not isinstance(negative_prompt, List):
194
- negative_prompt = [negative_prompt] * 1
195
- with torch.inference_mode():
196
- (
197
- prompt_embeds_c,
198
- _,
199
- _,
200
- _,
201
- ) = pipe.encode_prompt(
202
- prompt,
203
- num_images_per_prompt=1,
204
- do_classifier_free_guidance=False,
205
- negative_prompt=negative_prompt,
206
- )
207
-
208
- pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
209
- garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
210
- generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
211
- images = pipe(
212
- prompt_embeds=prompt_embeds.to(device, torch.float16),
213
- negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
214
- pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
215
- negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
216
- num_inference_steps=denoise_steps,
217
- generator=generator,
218
- strength=1.0,
219
- pose_img=pose_img.to(device, torch.float16),
220
- text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
221
- cloth=garm_tensor.to(device, torch.float16),
222
- mask_image=mask,
223
- image=human_img,
224
- height=1024,
225
- width=768,
226
- ip_adapter_image=garm_img.resize((768, 1024)),
227
- guidance_scale=2.0,
228
- )[0]
229
-
230
- if is_checked_crop:
231
- out_img = images[0].resize(crop_size)
232
- human_img_orig.paste(out_img, (int(left), int(top)))
233
- return human_img_orig, mask_gray
234
- else:
235
- return images[0], mask_gray
236
-
237
- # Gradio Interface
238
- def greet():
239
- return "Hello, welcome to the virtual try-on demo!"
240
-
241
- demo = gr.Interface(fn=greet, inputs=[], outputs=[])
242
- demo.launch()