Spaces:
Build error
Build error
Delete app.py
Browse files
app.py
DELETED
@@ -1,242 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import spaces
|
3 |
-
import torch
|
4 |
-
from PIL import Image
|
5 |
-
|
6 |
-
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
|
7 |
-
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
|
8 |
-
from src.unet_hacked_tryon import UNet2DConditionModel
|
9 |
-
from transformers import (
|
10 |
-
CLIPImageProcessor,
|
11 |
-
CLIPVisionModelWithProjection,
|
12 |
-
CLIPTextModel,
|
13 |
-
CLIPTextModelWithProjection,
|
14 |
-
)
|
15 |
-
from diffusers import DDPMScheduler, AutoencoderKL
|
16 |
-
from typing import List
|
17 |
-
|
18 |
-
import os
|
19 |
-
from transformers import AutoTokenizer
|
20 |
-
import numpy as np
|
21 |
-
from utils_mask import get_mask_location
|
22 |
-
from torchvision import transforms
|
23 |
-
import apply_net
|
24 |
-
from preprocess.humanparsing.run_parsing import Parsing
|
25 |
-
from preprocess.openpose.run_openpose import OpenPose
|
26 |
-
from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
|
27 |
-
from torchvision.transforms.functional import to_pil_image
|
28 |
-
|
29 |
-
# Function to convert PIL image to binary mask
|
30 |
-
def pil_to_binary_mask(pil_image, threshold=0):
|
31 |
-
np_image = np.array(pil_image)
|
32 |
-
grayscale_image = Image.fromarray(np_image).convert("L")
|
33 |
-
binary_mask = np.array(grayscale_image) > threshold
|
34 |
-
mask = np.zeros(binary_mask.shape, dtype=np.uint8)
|
35 |
-
for i in range(binary_mask.shape[0]):
|
36 |
-
for j in range(binary_mask.shape[1]):
|
37 |
-
if binary_mask[i, j]:
|
38 |
-
mask[i, j] = 1
|
39 |
-
mask = (mask * 255).astype(np.uint8)
|
40 |
-
output_mask = Image.fromarray(mask)
|
41 |
-
return output_mask
|
42 |
-
|
43 |
-
# Base path setup
|
44 |
-
base_path = 'yisol/IDM-VTON'
|
45 |
-
example_path = os.path.join(os.path.dirname(__file__), 'example')
|
46 |
-
|
47 |
-
# Model loading
|
48 |
-
unet = UNet2DConditionModel.from_pretrained(
|
49 |
-
base_path,
|
50 |
-
subfolder="unet",
|
51 |
-
torch_dtype=torch.float16,
|
52 |
-
)
|
53 |
-
unet.requires_grad_(False)
|
54 |
-
tokenizer_one = AutoTokenizer.from_pretrained(
|
55 |
-
base_path,
|
56 |
-
subfolder="tokenizer",
|
57 |
-
use_fast=False,
|
58 |
-
)
|
59 |
-
tokenizer_two = AutoTokenizer.from_pretrained(
|
60 |
-
base_path,
|
61 |
-
subfolder="tokenizer_2",
|
62 |
-
use_fast=False,
|
63 |
-
)
|
64 |
-
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
|
65 |
-
|
66 |
-
text_encoder_one = CLIPTextModel.from_pretrained(
|
67 |
-
base_path,
|
68 |
-
subfolder="text_encoder",
|
69 |
-
torch_dtype=torch.float16,
|
70 |
-
)
|
71 |
-
text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
|
72 |
-
base_path,
|
73 |
-
subfolder="text_encoder_2",
|
74 |
-
torch_dtype=torch.float16,
|
75 |
-
)
|
76 |
-
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
|
77 |
-
base_path,
|
78 |
-
subfolder="image_encoder",
|
79 |
-
torch_dtype=torch.float16,
|
80 |
-
)
|
81 |
-
vae = AutoencoderKL.from_pretrained(base_path,
|
82 |
-
subfolder="vae",
|
83 |
-
torch_dtype=torch.float16,
|
84 |
-
)
|
85 |
-
|
86 |
-
# "stabilityai/stable-diffusion-xl-base-1.0",
|
87 |
-
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
|
88 |
-
base_path,
|
89 |
-
subfolder="unet_encoder",
|
90 |
-
torch_dtype=torch.float16,
|
91 |
-
)
|
92 |
-
|
93 |
-
parsing_model = Parsing(0)
|
94 |
-
openpose_model = OpenPose(0)
|
95 |
-
|
96 |
-
UNet_Encoder.requires_grad_(False)
|
97 |
-
image_encoder.requires_grad_(False)
|
98 |
-
vae.requires_grad_(False)
|
99 |
-
unet.requires_grad_(False)
|
100 |
-
text_encoder_one.requires_grad_(False)
|
101 |
-
text_encoder_two.requires_grad_(False)
|
102 |
-
tensor_transfrom = transforms.Compose(
|
103 |
-
[
|
104 |
-
transforms.ToTensor(),
|
105 |
-
transforms.Normalize([0.5], [0.5]),
|
106 |
-
]
|
107 |
-
)
|
108 |
-
|
109 |
-
# Tryon pipeline setup
|
110 |
-
pipe = TryonPipeline.from_pretrained(
|
111 |
-
base_path,
|
112 |
-
unet=unet,
|
113 |
-
vae=vae,
|
114 |
-
feature_extractor=CLIPImageProcessor(),
|
115 |
-
text_encoder=text_encoder_one,
|
116 |
-
text_encoder_2=text_encoder_two,
|
117 |
-
tokenizer=tokenizer_one,
|
118 |
-
tokenizer_2=tokenizer_two,
|
119 |
-
scheduler=noise_scheduler,
|
120 |
-
image_encoder=image_encoder,
|
121 |
-
torch_dtype=torch.float16,
|
122 |
-
)
|
123 |
-
pipe.unet_encoder = UNet_Encoder
|
124 |
-
|
125 |
-
# Start try-on function
|
126 |
-
@spaces.GPU
|
127 |
-
def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
|
128 |
-
device = "cuda"
|
129 |
-
|
130 |
-
openpose_model.preprocessor.body_estimation.model.to(device)
|
131 |
-
pipe.to(device)
|
132 |
-
pipe.unet_encoder.to(device)
|
133 |
-
|
134 |
-
garm_img = garm_img.convert("RGB").resize((768, 1024))
|
135 |
-
human_img_orig = dict["background"].convert("RGB")
|
136 |
-
|
137 |
-
if is_checked_crop:
|
138 |
-
width, height = human_img_orig.size
|
139 |
-
target_width = int(min(width, height * (3 / 4)))
|
140 |
-
target_height = int(min(height, width * (4 / 3)))
|
141 |
-
left = (width - target_width) / 2
|
142 |
-
top = (height - target_height) / 2
|
143 |
-
right = (width + target_width) / 2
|
144 |
-
bottom = (height + target_height) / 2
|
145 |
-
cropped_img = human_img_orig.crop((left, top, right, bottom))
|
146 |
-
crop_size = cropped_img.size
|
147 |
-
human_img = cropped_img.resize((768, 1024))
|
148 |
-
else:
|
149 |
-
human_img = human_img_orig.resize((768, 1024))
|
150 |
-
|
151 |
-
if is_checked:
|
152 |
-
keypoints = openpose_model(human_img.resize((384, 512)))
|
153 |
-
model_parse, _ = parsing_model(human_img.resize((384, 512)))
|
154 |
-
mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
|
155 |
-
mask = mask.resize((768, 1024))
|
156 |
-
else:
|
157 |
-
mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
|
158 |
-
mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
|
159 |
-
mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
|
160 |
-
|
161 |
-
human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
|
162 |
-
human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
|
163 |
-
|
164 |
-
args = apply_net.create_argument_parser().parse_args(
|
165 |
-
('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
|
166 |
-
)
|
167 |
-
pose_img = args.func(args, human_img_arg)
|
168 |
-
pose_img = pose_img[:, :, ::-1]
|
169 |
-
pose_img = Image.fromarray(pose_img).resize((768, 1024))
|
170 |
-
|
171 |
-
with torch.no_grad():
|
172 |
-
with torch.cuda.amp.autocast():
|
173 |
-
with torch.no_grad():
|
174 |
-
prompt = "model is wearing " + garment_des
|
175 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
176 |
-
with torch.inference_mode():
|
177 |
-
(
|
178 |
-
prompt_embeds,
|
179 |
-
negative_prompt_embeds,
|
180 |
-
pooled_prompt_embeds,
|
181 |
-
negative_pooled_prompt_embeds,
|
182 |
-
) = pipe.encode_prompt(
|
183 |
-
prompt,
|
184 |
-
num_images_per_prompt=1,
|
185 |
-
do_classifier_free_guidance=True,
|
186 |
-
negative_prompt=negative_prompt,
|
187 |
-
)
|
188 |
-
|
189 |
-
prompt = "a photo of " + garment_des
|
190 |
-
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
|
191 |
-
if not isinstance(prompt, List):
|
192 |
-
prompt = [prompt] * 1
|
193 |
-
if not isinstance(negative_prompt, List):
|
194 |
-
negative_prompt = [negative_prompt] * 1
|
195 |
-
with torch.inference_mode():
|
196 |
-
(
|
197 |
-
prompt_embeds_c,
|
198 |
-
_,
|
199 |
-
_,
|
200 |
-
_,
|
201 |
-
) = pipe.encode_prompt(
|
202 |
-
prompt,
|
203 |
-
num_images_per_prompt=1,
|
204 |
-
do_classifier_free_guidance=False,
|
205 |
-
negative_prompt=negative_prompt,
|
206 |
-
)
|
207 |
-
|
208 |
-
pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
|
209 |
-
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
|
210 |
-
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
|
211 |
-
images = pipe(
|
212 |
-
prompt_embeds=prompt_embeds.to(device, torch.float16),
|
213 |
-
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
|
214 |
-
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
|
215 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
|
216 |
-
num_inference_steps=denoise_steps,
|
217 |
-
generator=generator,
|
218 |
-
strength=1.0,
|
219 |
-
pose_img=pose_img.to(device, torch.float16),
|
220 |
-
text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
|
221 |
-
cloth=garm_tensor.to(device, torch.float16),
|
222 |
-
mask_image=mask,
|
223 |
-
image=human_img,
|
224 |
-
height=1024,
|
225 |
-
width=768,
|
226 |
-
ip_adapter_image=garm_img.resize((768, 1024)),
|
227 |
-
guidance_scale=2.0,
|
228 |
-
)[0]
|
229 |
-
|
230 |
-
if is_checked_crop:
|
231 |
-
out_img = images[0].resize(crop_size)
|
232 |
-
human_img_orig.paste(out_img, (int(left), int(top)))
|
233 |
-
return human_img_orig, mask_gray
|
234 |
-
else:
|
235 |
-
return images[0], mask_gray
|
236 |
-
|
237 |
-
# Gradio Interface
|
238 |
-
def greet():
|
239 |
-
return "Hello, welcome to the virtual try-on demo!"
|
240 |
-
|
241 |
-
demo = gr.Interface(fn=greet, inputs=[], outputs=[])
|
242 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|