ML-Motivators commited on
Commit
3ec9845
·
verified ·
1 Parent(s): 3f070ef

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +242 -0
app.py ADDED
@@ -0,0 +1,242 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import torch
4
+ from PIL import Image
5
+
6
+ from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline
7
+ from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref
8
+ from src.unet_hacked_tryon import UNet2DConditionModel
9
+ from transformers import (
10
+ CLIPImageProcessor,
11
+ CLIPVisionModelWithProjection,
12
+ CLIPTextModel,
13
+ CLIPTextModelWithProjection,
14
+ )
15
+ from diffusers import DDPMScheduler, AutoencoderKL
16
+ from typing import List
17
+
18
+ import os
19
+ from transformers import AutoTokenizer
20
+ import numpy as np
21
+ from utils_mask import get_mask_location
22
+ from torchvision import transforms
23
+ import apply_net
24
+ from preprocess.humanparsing.run_parsing import Parsing
25
+ from preprocess.openpose.run_openpose import OpenPose
26
+ from detectron2.data.detection_utils import convert_PIL_to_numpy, _apply_exif_orientation
27
+ from torchvision.transforms.functional import to_pil_image
28
+
29
+ # Function to convert PIL image to binary mask
30
+ def pil_to_binary_mask(pil_image, threshold=0):
31
+ np_image = np.array(pil_image)
32
+ grayscale_image = Image.fromarray(np_image).convert("L")
33
+ binary_mask = np.array(grayscale_image) > threshold
34
+ mask = np.zeros(binary_mask.shape, dtype=np.uint8)
35
+ for i in range(binary_mask.shape[0]):
36
+ for j in range(binary_mask.shape[1]):
37
+ if binary_mask[i, j]:
38
+ mask[i, j] = 1
39
+ mask = (mask * 255).astype(np.uint8)
40
+ output_mask = Image.fromarray(mask)
41
+ return output_mask
42
+
43
+ # Base path setup
44
+ base_path = 'yisol/IDM-VTON'
45
+ example_path = os.path.join(os.path.dirname(__file__), 'example')
46
+
47
+ # Model loading
48
+ unet = UNet2DConditionModel.from_pretrained(
49
+ base_path,
50
+ subfolder="unet",
51
+ torch_dtype=torch.float16,
52
+ )
53
+ unet.requires_grad_(False)
54
+ tokenizer_one = AutoTokenizer.from_pretrained(
55
+ base_path,
56
+ subfolder="tokenizer",
57
+ use_fast=False,
58
+ )
59
+ tokenizer_two = AutoTokenizer.from_pretrained(
60
+ base_path,
61
+ subfolder="tokenizer_2",
62
+ use_fast=False,
63
+ )
64
+ noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler")
65
+
66
+ text_encoder_one = CLIPTextModel.from_pretrained(
67
+ base_path,
68
+ subfolder="text_encoder",
69
+ torch_dtype=torch.float16,
70
+ )
71
+ text_encoder_two = CLIPTextModelWithProjection.from_pretrained(
72
+ base_path,
73
+ subfolder="text_encoder_2",
74
+ torch_dtype=torch.float16,
75
+ )
76
+ image_encoder = CLIPVisionModelWithProjection.from_pretrained(
77
+ base_path,
78
+ subfolder="image_encoder",
79
+ torch_dtype=torch.float16,
80
+ )
81
+ vae = AutoencoderKL.from_pretrained(base_path,
82
+ subfolder="vae",
83
+ torch_dtype=torch.float16,
84
+ )
85
+
86
+ # "stabilityai/stable-diffusion-xl-base-1.0",
87
+ UNet_Encoder = UNet2DConditionModel_ref.from_pretrained(
88
+ base_path,
89
+ subfolder="unet_encoder",
90
+ torch_dtype=torch.float16,
91
+ )
92
+
93
+ parsing_model = Parsing(0)
94
+ openpose_model = OpenPose(0)
95
+
96
+ UNet_Encoder.requires_grad_(False)
97
+ image_encoder.requires_grad_(False)
98
+ vae.requires_grad_(False)
99
+ unet.requires_grad_(False)
100
+ text_encoder_one.requires_grad_(False)
101
+ text_encoder_two.requires_grad_(False)
102
+ tensor_transfrom = transforms.Compose(
103
+ [
104
+ transforms.ToTensor(),
105
+ transforms.Normalize([0.5], [0.5]),
106
+ ]
107
+ )
108
+
109
+ # Tryon pipeline setup
110
+ pipe = TryonPipeline.from_pretrained(
111
+ base_path,
112
+ unet=unet,
113
+ vae=vae,
114
+ feature_extractor=CLIPImageProcessor(),
115
+ text_encoder=text_encoder_one,
116
+ text_encoder_2=text_encoder_two,
117
+ tokenizer=tokenizer_one,
118
+ tokenizer_2=tokenizer_two,
119
+ scheduler=noise_scheduler,
120
+ image_encoder=image_encoder,
121
+ torch_dtype=torch.float16,
122
+ )
123
+ pipe.unet_encoder = UNet_Encoder
124
+
125
+ # Start try-on function
126
+ @spaces.GPU
127
+ def start_tryon(dict, garm_img, garment_des, is_checked, is_checked_crop, denoise_steps, seed):
128
+ device = "cuda"
129
+
130
+ openpose_model.preprocessor.body_estimation.model.to(device)
131
+ pipe.to(device)
132
+ pipe.unet_encoder.to(device)
133
+
134
+ garm_img = garm_img.convert("RGB").resize((768, 1024))
135
+ human_img_orig = dict["background"].convert("RGB")
136
+
137
+ if is_checked_crop:
138
+ width, height = human_img_orig.size
139
+ target_width = int(min(width, height * (3 / 4)))
140
+ target_height = int(min(height, width * (4 / 3)))
141
+ left = (width - target_width) / 2
142
+ top = (height - target_height) / 2
143
+ right = (width + target_width) / 2
144
+ bottom = (height + target_height) / 2
145
+ cropped_img = human_img_orig.crop((left, top, right, bottom))
146
+ crop_size = cropped_img.size
147
+ human_img = cropped_img.resize((768, 1024))
148
+ else:
149
+ human_img = human_img_orig.resize((768, 1024))
150
+
151
+ if is_checked:
152
+ keypoints = openpose_model(human_img.resize((384, 512)))
153
+ model_parse, _ = parsing_model(human_img.resize((384, 512)))
154
+ mask, mask_gray = get_mask_location('hd', "upper_body", model_parse, keypoints)
155
+ mask = mask.resize((768, 1024))
156
+ else:
157
+ mask = pil_to_binary_mask(dict['layers'][0].convert("RGB").resize((768, 1024)))
158
+ mask_gray = (1 - transforms.ToTensor()(mask)) * tensor_transfrom(human_img)
159
+ mask_gray = to_pil_image((mask_gray + 1.0) / 2.0)
160
+
161
+ human_img_arg = _apply_exif_orientation(human_img.resize((384, 512)))
162
+ human_img_arg = convert_PIL_to_numpy(human_img_arg, format="BGR")
163
+
164
+ args = apply_net.create_argument_parser().parse_args(
165
+ ('show', './configs/densepose_rcnn_R_50_FPN_s1x.yaml', './ckpt/densepose/model_final_162be9.pkl', 'dp_segm', '-v', '--opts', 'MODEL.DEVICE', 'cuda')
166
+ )
167
+ pose_img = args.func(args, human_img_arg)
168
+ pose_img = pose_img[:, :, ::-1]
169
+ pose_img = Image.fromarray(pose_img).resize((768, 1024))
170
+
171
+ with torch.no_grad():
172
+ with torch.cuda.amp.autocast():
173
+ with torch.no_grad():
174
+ prompt = "model is wearing " + garment_des
175
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
176
+ with torch.inference_mode():
177
+ (
178
+ prompt_embeds,
179
+ negative_prompt_embeds,
180
+ pooled_prompt_embeds,
181
+ negative_pooled_prompt_embeds,
182
+ ) = pipe.encode_prompt(
183
+ prompt,
184
+ num_images_per_prompt=1,
185
+ do_classifier_free_guidance=True,
186
+ negative_prompt=negative_prompt,
187
+ )
188
+
189
+ prompt = "a photo of " + garment_des
190
+ negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality"
191
+ if not isinstance(prompt, List):
192
+ prompt = [prompt] * 1
193
+ if not isinstance(negative_prompt, List):
194
+ negative_prompt = [negative_prompt] * 1
195
+ with torch.inference_mode():
196
+ (
197
+ prompt_embeds_c,
198
+ _,
199
+ _,
200
+ _,
201
+ ) = pipe.encode_prompt(
202
+ prompt,
203
+ num_images_per_prompt=1,
204
+ do_classifier_free_guidance=False,
205
+ negative_prompt=negative_prompt,
206
+ )
207
+
208
+ pose_img = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16)
209
+ garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16)
210
+ generator = torch.Generator(device).manual_seed(seed) if seed is not None else None
211
+ images = pipe(
212
+ prompt_embeds=prompt_embeds.to(device, torch.float16),
213
+ negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16),
214
+ pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16),
215
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16),
216
+ num_inference_steps=denoise_steps,
217
+ generator=generator,
218
+ strength=1.0,
219
+ pose_img=pose_img.to(device, torch.float16),
220
+ text_embeds_cloth=prompt_embeds_c.to(device, torch.float16),
221
+ cloth=garm_tensor.to(device, torch.float16),
222
+ mask_image=mask,
223
+ image=human_img,
224
+ height=1024,
225
+ width=768,
226
+ ip_adapter_image=garm_img.resize((768, 1024)),
227
+ guidance_scale=2.0,
228
+ )[0]
229
+
230
+ if is_checked_crop:
231
+ out_img = images[0].resize(crop_size)
232
+ human_img_orig.paste(out_img, (int(left), int(top)))
233
+ return human_img_orig, mask_gray
234
+ else:
235
+ return images[0], mask_gray
236
+
237
+ # Gradio Interface
238
+ def greet():
239
+ return "Hello, welcome to the virtual try-on demo!"
240
+
241
+ demo = gr.Interface(fn=greet, inputs=[], outputs=[])
242
+ demo.launch()