import streamlit as st from transformers import pipeline def run_model(text_in, model_in): classifier = pipeline(task="sentiment-analysis", model=model_in) analysis = classifier(text_in) for output in analysis: to_output = "Sentiment: ", output["label"], " Confidence Score: ", "{0:.2g}".format( output["score"] * 100) st.markdown(to_output) models_available = {"Roberta Large English": "siebert/sentiment-roberta-large-english", "Generic": "Seethal/sentiment_analysis_generic_dataset", "Twitter Roberta": "cardiffnlp/twitter-roberta-base-sentiment"} st.title("Sentiment Analysis Web Application") text_input = st.text_area( label="Enter the text to analyze", value="I Love Pizza") model_picked = st.selectbox( "Choose a model to run on", options=models_available.keys()) st.button("Submit", on_click=run_model, args=( text_input, models_available[model_picked]))