Spaces:
Starting
on
T4
Starting
on
T4
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch_geometric.nn import GCNConv | |
class GNN_MD(torch.nn.Module): | |
def __init__(self, num_features, hidden_dim): | |
super(GNN_MD, self).__init__() | |
self.conv1 = GCNConv(num_features, hidden_dim) | |
self.bn1 = nn.BatchNorm1d(hidden_dim) | |
self.conv2 = GCNConv(hidden_dim, hidden_dim*2) | |
self.bn2 = nn.BatchNorm1d(hidden_dim*2) | |
self.conv3 = GCNConv(hidden_dim*2, hidden_dim*4) | |
self.bn3 = nn.BatchNorm1d(hidden_dim*4) | |
self.conv4 = GCNConv(hidden_dim*4, hidden_dim*4) | |
self.bn4 = nn.BatchNorm1d(hidden_dim*4) | |
self.conv5 = GCNConv(hidden_dim*4, hidden_dim*8) | |
self.bn5 = nn.BatchNorm1d(hidden_dim*8) | |
self.fc1 = nn.Linear(hidden_dim*8, hidden_dim*4) | |
self.fc2 = nn.Linear(hidden_dim*4, 1) | |
def forward(self, data): | |
x = self.conv1(data.x, data.edge_index, data.edge_attr.view(-1)) | |
x = F.relu(x) | |
x = self.bn1(x) | |
x = self.conv2(x, data.edge_index, data.edge_attr.view(-1)) | |
x = F.relu(x) | |
x = self.bn2(x) | |
x = self.conv3(x, data.edge_index, data.edge_attr.view(-1)) | |
x = F.relu(x) | |
x = self.bn3(x) | |
x = self.conv4(x, data.edge_index, data.edge_attr.view(-1)) | |
x = self.bn4(x) | |
x = F.relu(x) | |
x = self.conv5(x, data.edge_index, data.edge_attr.view(-1)) | |
x = self.bn5(x) | |
#x = global_add_pool(x, x.batch) | |
x = F.relu(x) | |
x = F.relu(self.fc1(x)) | |
x = F.dropout(x, p=0.25) | |
return self.fc2(x).view(-1) |