Spaces:
Running
Running
import gradio as gr | |
from transformers import TimeSeriesTransformerForPrediction, TimeSeriesTransformerConfig | |
import torch | |
import numpy as np | |
# Carregar configuração | |
config = TimeSeriesTransformerConfig.from_pretrained("google/timesfm-2.0-500m-pytorch") | |
config.prediction_length = 3 | |
config.context_length = 20 # Aumentado para acomodar os lags | |
config.lags_sequence = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] # Lags menores que context_length | |
# Carregar modelo com a configuração ajustada | |
model = TimeSeriesTransformerForPrediction.from_pretrained( | |
"google/timesfm-2.0-500m-pytorch", | |
config=config, | |
torch_dtype="auto" | |
) | |
def prever_vendas(historico): | |
# Converter entrada em tensor | |
historico = [float(x) for x in historico.split(",") if x.strip()] | |
if len(historico) != config.context_length: | |
raise ValueError(f"Histórico deve ter {config.context_length} valores.") | |
# Formatar dados | |
inputs = torch.tensor(historico).unsqueeze(0) | |
# Adicionar parâmetros necessários | |
past_time_features = torch.zeros(1, config.context_length, 1) # Características temporais dummy | |
past_observed_mask = torch.ones(1, config.context_length) # Dados observados | |
# Gerar previsão | |
with torch.no_grad(): | |
outputs = model( | |
inputs, | |
past_time_features=past_time_features, | |
past_observed_mask=past_observed_mask | |
) | |
forecast = outputs.mean.squeeze().tolist() | |
return np.round(forecast, 2) | |
# Interface Gradio | |
iface = gr.Interface( | |
fn=prever_vendas, | |
inputs=gr.Textbox(label=f"Histórico de Vendas ({config.context_length} meses, separados por vírgulas)"), | |
outputs=gr.Textbox(label=f"Previsão para os Próximos {config.prediction_length} Meses"), | |
examples=[ | |
["140,155,160,145,150,165,170,160,175,160,155,170,180,190,200,210,220,230,240,250"], # 20 meses | |
], | |
cache_examples=False # Desativar cache para evitar erros | |
) | |
iface.launch() |