Spaces:
Runtime error
Runtime error
File size: 1,850 Bytes
60de325 a1e2d43 60de325 a1e2d43 9068905 a1e2d43 6ac2735 a1e2d43 9627e09 9068905 9627e09 9068905 60de325 a1e2d43 1106ef4 6ac2735 1106ef4 6ac2735 1106ef4 a1e2d43 60de325 1106ef4 9068905 a1e2d43 1106ef4 a1e2d43 60de325 6ac2735 60de325 a1e2d43 1106ef4 60de325 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import gradio as gr
from transformers import TimeSeriesTransformerForPrediction, TimeSeriesTransformerConfig
import torch
import pandas as pd
import numpy as np
# Carregar configura莽茫o
config = TimeSeriesTransformerConfig.from_pretrained("google/timesfm-2.0-500m-pytorch")
config.prediction_length = 3
config.context_length = 12
# Carregar modelo
model = TimeSeriesTransformerForPrediction.from_pretrained(
"google/timesfm-2.0-500m-pytorch",
config=config,
torch_dtype="auto"
)
def prever_vendas(historico):
# Converter entrada em tensor
historico = [float(x) for x in historico.split(",") if x.strip()]
if len(historico) != config.context_length:
raise ValueError(f"Hist贸rico deve ter {config.context_length} valores.")
# Formatar dados
inputs = torch.tensor(historico).unsqueeze(0)
# Adicionar par芒metros ausentes (valores dummy para exemplo)
past_time_features = torch.zeros(1, config.context_length, 1) # Ex: timestamps normalizados
past_observed_mask = torch.ones(1, config.context_length) # Todos os dados observados
# Gerar previs茫o
with torch.no_grad():
outputs = model(
inputs,
past_time_features=past_time_features,
past_observed_mask=past_observed_mask
)
forecast = outputs.mean.squeeze().tolist()
return np.round(forecast, 2)
# Interface Gradio
iface = gr.Interface(
fn=prever_vendas,
inputs=gr.Textbox(label=f"Hist贸rico de Vendas ({config.context_length} meses, separados por v铆rgulas)"),
outputs=gr.Textbox(label=f"Previs茫o para os Pr贸ximos {config.prediction_length} Meses"),
examples=[
["140,155,160,145,150,165,170,160,175,160,155,170"], # 12 meses
],
cache_examples=False # Desativar cache para evitar erro de arquivo
)
iface.launch() |