File size: 14,114 Bytes
f5625dd
 
509379a
8812813
509379a
 
 
 
 
 
 
 
62da12f
 
509379a
 
 
 
 
 
 
62da12f
509379a
 
62da12f
509379a
 
f5625dd
 
 
 
a089b7d
f5625dd
 
a089b7d
 
 
 
 
f5625dd
 
 
6daa73e
a089b7d
 
 
 
 
 
9a98b5e
62da12f
f5625dd
62da12f
2377af9
a089b7d
2377af9
 
a089b7d
2377af9
 
 
 
 
f5625dd
 
 
 
 
 
 
a089b7d
2377af9
 
 
a089b7d
f5625dd
 
a089b7d
f5625dd
2377af9
 
 
 
f5625dd
 
 
 
 
 
2377af9
 
 
f5625dd
a089b7d
 
 
 
f5625dd
ee02ee6
 
 
8812813
 
 
 
 
 
 
 
 
 
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
8812813
 
a089b7d
 
f5625dd
ee02ee6
a089b7d
 
 
3584253
 
 
 
 
 
 
 
 
 
 
 
 
 
a089b7d
3584253
 
 
 
 
 
a089b7d
3584253
 
a089b7d
 
3584253
 
a089b7d
 
ee02ee6
 
 
 
 
 
 
 
 
a089b7d
ee02ee6
 
 
 
 
 
a089b7d
ee02ee6
 
a089b7d
ee02ee6
f5625dd
 
a089b7d
 
 
f5625dd
ee02ee6
a089b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8812813
f5625dd
 
a089b7d
 
 
f5625dd
a089b7d
 
 
 
 
 
 
 
 
 
 
 
 
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
 
 
 
 
 
 
 
 
 
 
 
8812813
a089b7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509379a
f5625dd
509379a
a089b7d
 
 
f5625dd
a089b7d
 
62da12f
f5625dd
ee02ee6
8812813
 
a089b7d
 
8812813
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
8812813
 
a089b7d
 
 
f5625dd
a089b7d
 
62da12f
f5625dd
 
a089b7d
 
f5625dd
 
a089b7d
f5625dd
 
62da12f
f5625dd
62da12f
f5625dd
 
509379a
a089b7d
 
 
62da12f
f5625dd
a089b7d
62da12f
f5625dd
ee02ee6
8812813
 
 
 
 
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
8812813
 
a089b7d
 
 
62da12f
f5625dd
a089b7d
62da12f
f5625dd
ee02ee6
8812813
a089b7d
 
 
 
 
8812813
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
8812813
a089b7d
 
 
62da12f
f5625dd
a089b7d
 
62da12f
f5625dd
ee02ee6
 
 
 
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
 
ee02ee6
a089b7d
ee02ee6
 
a089b7d
 
 
509379a
f5625dd
a089b7d
62da12f
ee02ee6
 
f5625dd
8812813
f5625dd
8812813
 
f5625dd
a089b7d
f5625dd
 
62da12f
f5625dd
 
8812813
a089b7d
8812813
a089b7d
 
62da12f
f5625dd
5d7019f
f4aa997
a089b7d
f4aa997
 
 
 
 
 
 
 
 
a089b7d
f4aa997
 
 
 
 
 
a089b7d
f4aa997
a089b7d
 
f4aa997
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *

def dataset_contents(dataset, metrics):
    
    custom_css = """
                <style>
                .my-dataset-info {
                # background-color: #F9EBEA;
                # padding: 10px;
                color: #050505;
                font-style: normal;
                font-size: 8px;
                height: auto;
                }
                </style>
                """
    st.markdown(custom_css, unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this dataset</b>: {dataset}</p>
                    </div>""", unsafe_allow_html=True)
    st.markdown(f"""<div class="my-dataset-info">
                    <p><b>About this metric</b>: {metrics}</p>
                    </div>""", unsafe_allow_html=True)


def dashboard():

    with st.container():
        st.title("Leaderboard for AudioBench")
   
        st.markdown("""
            [gh1]: https://github.com/AudioLLMs/AudioBench
            [gh2]: https://github.com/AudioLLMs/AudioBench
            **Toolkit:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/AudioBench?style=social)][gh1] | 
            [**Research Paper**](https://arxiv.org/abs/2406.16020) | 
            **Resource for AudioLLMs:** [![GitHub Repo stars](https://img.shields.io/github/stars/AudioLLMs/Awesome-Audio-LLM?style=social)][gh2]
            """)


    st.markdown("""
            #### Recent updates
            - **Jan. 2025**: Update the layout.
            - **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
            - **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
            - **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
            - **Aug. 2024**: Initial leaderboard is now online.
            """)

    st.divider()
    
    st.markdown("""
                #### Evaluating Audio-based Large Language Models
                
                - AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
                - AudioBench is an evaluation benchmark that we continually improve and maintain.
                
                Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
                """
                )


    with st.container():
        
        st.markdown('''
                ''')
        
        st.markdown("###### :dart: Our Benchmark includes: ")
        cols = st.columns(8)
        cols[0].metric(label="Tasks", value=">8")
        cols[1].metric(label="Datasets", value=">40")
        cols[2].metric(label="Evaluated Models", value=">5")
    
    st.divider()
    with st.container():
        left_co, right_co = st.columns([1, 0.7])

        with left_co:
            st.markdown("""
                        ##### Citations :round_pushpin:
                        ```
                        @article{wang2024audiobench,
                            title={AudioBench: A Universal Benchmark for Audio Large Language Models},
                            author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
                            journal={arXiv preprint arXiv:2406.16020},
                            year={2024}
                            }
                        ```
                        """)




def asr_english():
    st.title("Task: Automatic Speech Recognition - English")
    
    sum = ['Overall']
    dataset_lists = [
                    'LibriSpeech-Test-Clean', 
                    'LibriSpeech-Test-Other', 
                    'Common-Voice-15-En-Test', 
                    'Peoples-Speech-Test', 
                    'GigaSpeech-Test', 
                    'Earnings21-Test', 
                    'Earnings22-Test', 
                    'Tedlium3-Test', 
                    'Tedlium3-Long-form-Test', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_english', ['wer'])
        else:
            dataset_contents(asr_datsets[filter_1], metrics['wer'])
            draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)





def asr_singlish():
    st.title("Task: Automatic Speech Recognition - Singlish")

    sum = ['Overall']
    dataset_lists = [
                    'IMDA-Part1-ASR-Test', 
                    'IMDA-Part2-ASR-Test',
                    'IMDA-Part3-30s-ASR-Test',
                    'IMDA-Part4-30s-ASR-Test',
                    'IMDA-Part5-30s-ASR-Test',
                    'IMDA-Part6-30s-ASR-Test',
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_singlish', ['wer'])
        else:
            dataset_contents(singlish_asr_datasets[filter_1], metrics['wer'])
            draw('su', 'asr_singlish', filter_1, 'wer')




def asr_mandarin():
    st.title("Task: Automatic Speech Recognition - Mandarin")

    sum = ['Overall']
    dataset_lists = [
                    'Aishell-ASR-ZH-Test', 
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('asr_mandarin', ['wer'])
        else:
            dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
            draw('su', 'asr_mandarin', filter_1, 'wer')

    


def speech_translation():
    st.title("Task: Speech Translation")
    
    sum = ['Overall']
    dataset_lists = [
                        'CoVoST2-EN-ID-test', 
                        'CoVoST2-EN-ZH-test',
                        'CoVoST2-EN-TA-test', 
                        'CoVoST2-ID-EN-test', 
                        'CoVoST2-ZH-EN-test', 
                        'CoVoST2-TA-EN-test']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('st', ['bleu'])
        else:
            dataset_contents(spt_datasets[filter_1], metrics['bleu'])
            draw('su', 'ST', filter_1, 'bleu')




def speech_question_answering_english():
    st.title("Task: Spoken Question Answering - English")
    
    sum = ['Overall']

    dataset_lists = [
                    'CN-College-Listen-MCQ-Test',
                    'DREAM-TTS-MCQ-Test',
                    'SLUE-P2-SQA5-Test', 
                    'Public-SG-Speech-QA-Test', 
                    'Spoken-Squad-Test',
                     ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])

        #elif filter_1 in dataset_lists:
        #    dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
        #    draw('su', 'SQA', filter_1, 'llama3_70b_judge')
        
        else:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')




def speech_question_answering_singlish():
    st.title("Task: Spoken Question Answering - Singlish")
    
    sum = ['Overall']

    dataset_lists = [
              'MNSC-PART3-SQA', 
              'MNSC-PART4-SQA',
              'MNSC-PART5-SQA',
              'MNSC-PART6-SQA',
              ]


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left: 
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
        
        else:
            dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')




def speech_instruction():
    st.title("Task: Speech Instruction")
    
    sum = ['Overall']

    dataset_lists = ['OpenHermes-Audio-Test', 
                     'ALPACA-Audio-Test',
                     ]
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
        else:
            dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')




def audio_captioning():
    st.title("Task: Audio Captioning")

    filters_levelone = ['WavCaps-Test', 
                        'AudioCaps-Test',
                        ]
    filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    with middle:
        metric = st.selectbox('Metric', filters_leveltwo)

    if filter_1 or metric:
        dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
        draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))




def audio_scene_question_answering():
    st.title("Task: Audio Scene Question Answering")

    sum = ['Overall']

    dataset_lists = ['Clotho-AQA-Test', 
                    'WavCaps-QA-Test', 
                    'AudioCaps-QA-Test']
    
    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
        else:
            dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')




def emotion_recognition():
    st.title("Task: Emotion Recognition")

    sum = ['Overall']

    dataset_lists = [
                    'IEMOCAP-Emotion-Test', 
                    'MELD-Sentiment-Test', 
                    'MELD-Emotion-Test',
                    ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)

    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')




def accent_recognition():
    st.title("Task: Accent Recognition")

    sum = ['Overall']
    dataset_lists = ['VoxCeleb-Accent-Test']


    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)


    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
            draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')




def gender_recognition():
    st.title("Task: Gender Recognition")
    
    sum = ['Overall']

    dataset_lists =  ['VoxCeleb-Gender-Test', 
                        'IEMOCAP-Gender-Test']

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
        else:
            dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge'])
            draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')




def music_understanding():
    st.title("Task: Music Understanding - MCQ Questions")
    
    sum = ['Overall']

    dataset_lists =  ['MuChoMusic-Test',
                      ]

    filters_levelone = sum + dataset_lists
    
    left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
    
    with left:
        filter_1 = st.selectbox('Dataset', filters_levelone)
    
    if filter_1:
        if filter_1 in sum:
            sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
        else:
            dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['llama3_70b_judge'])
            draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')