File size: 14,114 Bytes
f5625dd 509379a 8812813 509379a 62da12f 509379a 62da12f 509379a 62da12f 509379a f5625dd a089b7d f5625dd a089b7d f5625dd 6daa73e a089b7d 9a98b5e 62da12f f5625dd 62da12f 2377af9 a089b7d 2377af9 a089b7d 2377af9 f5625dd a089b7d 2377af9 a089b7d f5625dd a089b7d f5625dd 2377af9 f5625dd 2377af9 f5625dd a089b7d f5625dd ee02ee6 8812813 f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d f5625dd ee02ee6 a089b7d 3584253 a089b7d 3584253 a089b7d 3584253 a089b7d 3584253 a089b7d ee02ee6 a089b7d ee02ee6 a089b7d ee02ee6 a089b7d ee02ee6 f5625dd a089b7d f5625dd ee02ee6 a089b7d 8812813 f5625dd a089b7d f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d 509379a f5625dd 509379a a089b7d f5625dd a089b7d 62da12f f5625dd ee02ee6 8812813 a089b7d 8812813 f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d f5625dd a089b7d 62da12f f5625dd a089b7d f5625dd a089b7d f5625dd 62da12f f5625dd 62da12f f5625dd 509379a a089b7d 62da12f f5625dd a089b7d 62da12f f5625dd ee02ee6 8812813 f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d 62da12f f5625dd a089b7d 62da12f f5625dd ee02ee6 8812813 a089b7d 8812813 f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d 62da12f f5625dd a089b7d 62da12f f5625dd ee02ee6 f5625dd a089b7d f5625dd 62da12f f5625dd ee02ee6 a089b7d ee02ee6 a089b7d 509379a f5625dd a089b7d 62da12f ee02ee6 f5625dd 8812813 f5625dd 8812813 f5625dd a089b7d f5625dd 62da12f f5625dd 8812813 a089b7d 8812813 a089b7d 62da12f f5625dd 5d7019f f4aa997 a089b7d f4aa997 a089b7d f4aa997 a089b7d f4aa997 a089b7d f4aa997 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import streamlit as st
from app.draw_diagram import *
from app.content import *
from app.summarization import *
def dataset_contents(dataset, metrics):
custom_css = """
<style>
.my-dataset-info {
# background-color: #F9EBEA;
# padding: 10px;
color: #050505;
font-style: normal;
font-size: 8px;
height: auto;
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this dataset</b>: {dataset}</p>
</div>""", unsafe_allow_html=True)
st.markdown(f"""<div class="my-dataset-info">
<p><b>About this metric</b>: {metrics}</p>
</div>""", unsafe_allow_html=True)
def dashboard():
with st.container():
st.title("Leaderboard for AudioBench")
st.markdown("""
[gh1]: https://github.com/AudioLLMs/AudioBench
[gh2]: https://github.com/AudioLLMs/AudioBench
**Toolkit:** [][gh1] |
[**Research Paper**](https://arxiv.org/abs/2406.16020) |
**Resource for AudioLLMs:** [][gh2]
""")
st.markdown("""
#### Recent updates
- **Jan. 2025**: Update the layout.
- **Dec. 2024**: Added MuChoMusic dataset for Music Understanding - MCQ Questions. From Paper: https://arxiv.org/abs/2408.01337.
- **Dec. 2024**: Singlish ASR task added! The datasets are available on [HF](https://huggingface.co/datasets/MERaLiON/MNSC).
- **Dec. 2024**: Updated layout and added support for comparison between models with similar sizes. 1) Reorganized layout for a better user experience. 2) Added performance summary for each task.
- **Aug. 2024**: Initial leaderboard is now online.
""")
st.divider()
st.markdown("""
#### Evaluating Audio-based Large Language Models
- AudioBench is a comprehensive evaluation benchmark designed for general instruction-following audio large language models.
- AudioBench is an evaluation benchmark that we continually improve and maintain.
Below are the initial 26 datasets that are included in AudioBench. We are now exteneded to over 40 datasets and going to extend to more in the future.
"""
)
with st.container():
st.markdown('''
''')
st.markdown("###### :dart: Our Benchmark includes: ")
cols = st.columns(8)
cols[0].metric(label="Tasks", value=">8")
cols[1].metric(label="Datasets", value=">40")
cols[2].metric(label="Evaluated Models", value=">5")
st.divider()
with st.container():
left_co, right_co = st.columns([1, 0.7])
with left_co:
st.markdown("""
##### Citations :round_pushpin:
```
@article{wang2024audiobench,
title={AudioBench: A Universal Benchmark for Audio Large Language Models},
author={Wang, Bin and Zou, Xunlong and Lin, Geyu and Sun, Shuo and Liu, Zhuohan and Zhang, Wenyu and Liu, Zhengyuan and Aw, AiTi and Chen, Nancy F},
journal={arXiv preprint arXiv:2406.16020},
year={2024}
}
```
""")
def asr_english():
st.title("Task: Automatic Speech Recognition - English")
sum = ['Overall']
dataset_lists = [
'LibriSpeech-Test-Clean',
'LibriSpeech-Test-Other',
'Common-Voice-15-En-Test',
'Peoples-Speech-Test',
'GigaSpeech-Test',
'Earnings21-Test',
'Earnings22-Test',
'Tedlium3-Test',
'Tedlium3-Long-form-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_english', ['wer'])
else:
dataset_contents(asr_datsets[filter_1], metrics['wer'])
draw('su', 'asr_english', filter_1, 'wer', cus_sort=True)
def asr_singlish():
st.title("Task: Automatic Speech Recognition - Singlish")
sum = ['Overall']
dataset_lists = [
'IMDA-Part1-ASR-Test',
'IMDA-Part2-ASR-Test',
'IMDA-Part3-30s-ASR-Test',
'IMDA-Part4-30s-ASR-Test',
'IMDA-Part5-30s-ASR-Test',
'IMDA-Part6-30s-ASR-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_singlish', ['wer'])
else:
dataset_contents(singlish_asr_datasets[filter_1], metrics['wer'])
draw('su', 'asr_singlish', filter_1, 'wer')
def asr_mandarin():
st.title("Task: Automatic Speech Recognition - Mandarin")
sum = ['Overall']
dataset_lists = [
'Aishell-ASR-ZH-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('asr_mandarin', ['wer'])
else:
dataset_contents(cnasr_datasets[filter_1], metrics['wer'])
draw('su', 'asr_mandarin', filter_1, 'wer')
def speech_translation():
st.title("Task: Speech Translation")
sum = ['Overall']
dataset_lists = [
'CoVoST2-EN-ID-test',
'CoVoST2-EN-ZH-test',
'CoVoST2-EN-TA-test',
'CoVoST2-ID-EN-test',
'CoVoST2-ZH-EN-test',
'CoVoST2-TA-EN-test']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('st', ['bleu'])
else:
dataset_contents(spt_datasets[filter_1], metrics['bleu'])
draw('su', 'ST', filter_1, 'bleu')
def speech_question_answering_english():
st.title("Task: Spoken Question Answering - English")
sum = ['Overall']
dataset_lists = [
'CN-College-Listen-MCQ-Test',
'DREAM-TTS-MCQ-Test',
'SLUE-P2-SQA5-Test',
'Public-SG-Speech-QA-Test',
'Spoken-Squad-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('sqa_english', ['llama3_70b_judge'])
#elif filter_1 in dataset_lists:
# dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
# draw('su', 'SQA', filter_1, 'llama3_70b_judge')
else:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'sqa_english', filter_1, 'llama3_70b_judge')
def speech_question_answering_singlish():
st.title("Task: Spoken Question Answering - Singlish")
sum = ['Overall']
dataset_lists = [
'MNSC-PART3-SQA',
'MNSC-PART4-SQA',
'MNSC-PART5-SQA',
'MNSC-PART6-SQA',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('sqa_singlish', ['llama3_70b_judge'])
else:
dataset_contents(sqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'sqa_singlish', filter_1, 'llama3_70b_judge')
def speech_instruction():
st.title("Task: Speech Instruction")
sum = ['Overall']
dataset_lists = ['OpenHermes-Audio-Test',
'ALPACA-Audio-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('speech_instruction', ['llama3_70b_judge'])
else:
dataset_contents(si_datasets[filter_1], metrics['llama3_70b_judge'])
draw('su', 'speech_instruction', filter_1, 'llama3_70b_judge')
def audio_captioning():
st.title("Task: Audio Captioning")
filters_levelone = ['WavCaps-Test',
'AudioCaps-Test',
]
filters_leveltwo = ['Llama3-70b-judge', 'Meteor']
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
with middle:
metric = st.selectbox('Metric', filters_leveltwo)
if filter_1 or metric:
dataset_contents(ac_datasets[filter_1], metrics[metric.lower().replace('-', '_')])
draw('asu', 'audio_captioning', filter_1, metric.lower().replace('-', '_'))
def audio_scene_question_answering():
st.title("Task: Audio Scene Question Answering")
sum = ['Overall']
dataset_lists = ['Clotho-AQA-Test',
'WavCaps-QA-Test',
'AudioCaps-QA-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('audio_scene_question_answering', ['llama3_70b_judge'])
else:
dataset_contents(asqa_datasets[filter_1], metrics['llama3_70b_judge'])
draw('asu', 'audio_scene_question_answering', filter_1, 'llama3_70b_judge')
def emotion_recognition():
st.title("Task: Emotion Recognition")
sum = ['Overall']
dataset_lists = [
'IEMOCAP-Emotion-Test',
'MELD-Sentiment-Test',
'MELD-Emotion-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('emotion_recognition', ['llama3_70b_judge'])
else:
dataset_contents(er_datasets[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'emotion_recognition', filter_1, 'llama3_70b_judge')
def accent_recognition():
st.title("Task: Accent Recognition")
sum = ['Overall']
dataset_lists = ['VoxCeleb-Accent-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('accent_recognition', ['llama3_70b_judge'])
else:
dataset_contents(ar_datsets[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'accent_recognition', filter_1, 'llama3_70b_judge')
def gender_recognition():
st.title("Task: Gender Recognition")
sum = ['Overall']
dataset_lists = ['VoxCeleb-Gender-Test',
'IEMOCAP-Gender-Test']
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('gender_recognition', ['llama3_70b_judge'])
else:
dataset_contents(gr_datasets[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'gender_recognition', filter_1, 'llama3_70b_judge')
def music_understanding():
st.title("Task: Music Understanding - MCQ Questions")
sum = ['Overall']
dataset_lists = ['MuChoMusic-Test',
]
filters_levelone = sum + dataset_lists
left, center, _, middle, right = st.columns([0.4, 0.2, 0.2, 0.2 ,0.2])
with left:
filter_1 = st.selectbox('Dataset', filters_levelone)
if filter_1:
if filter_1 in sum:
sum_table_mulit_metrix('music_understanding', ['llama3_70b_judge'])
else:
dataset_contents(MUSIC_MCQ_DATASETS[filter_1], metrics['llama3_70b_judge'])
draw('vu', 'music_understanding', filter_1, 'llama3_70b_judge')
|