File size: 3,514 Bytes
398027f
 
 
 
 
 
 
 
deded5a
398027f
 
 
 
 
 
 
 
 
 
 
 
 
75be3f6
398027f
75be3f6
398027f
 
75be3f6
 
 
398027f
 
 
fc7eb05
398027f
75be3f6
 
 
 
398027f
75be3f6
 
398027f
fc7eb05
8cd4b4f
 
 
398027f
 
 
 
4351a35
 
 
 
 
 
 
 
 
398027f
 
 
75be3f6
398027f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4351a35
 
 
 
 
398027f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
# from streamlit_echarts import JsCode
from streamlit_javascript import st_javascript
# from PIL import Image 

links_dic = {}

links_dic = {k.lower().replace('_', '-') : v for k, v in links_dic.items()}

# huggingface_image = Image.open('style/huggingface.jpg')

def nav_to(value):
    try:
        url = links_dic[str(value).lower()]
        js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
        st_javascript(js)
    except:
        pass

def draw(folder_name, category_name, dataset_name, metrics):
    
    folder = f"./results/{metrics}/"

    display_names = {
        'SU': 'Speech Understanding',
        'ASU': 'Audio Scene Understanding',
        'VU': 'Voice Understanding'
    }
    
    data_path = f'{folder}/{category_name.lower()}.csv'
    chart_data = pd.read_csv(data_path).round(2)

    # if sorted == 'Ascending':
    #     ascend = True 
    # else:
    #     ascend = False

    dataset_name = dataset_name.replace('-', '_').lower()
    chart_data = chart_data[['Model', dataset_name]]
    
    chart_data = chart_data.sort_values(by=[dataset_name], ascending=True).dropna(axis=0)

    if len(chart_data) == 0:
        return
    
    min_value = round(chart_data.iloc[:, 1::].min().min() - 0.1, 1) 
    max_value = round(chart_data.iloc[:, 1::].max().max() + 0.1, 1) 

    # columns = list(chart_data.columns)[1:]
    # for col in columns:
        # series.append(
        #     {
        #         "name": f"{col.replace('_', '-')}",
        #         "type": "line",
        #         "data": chart_data[f'{col}'].tolist(),
        #     }
        #     )
        

    options = {
        "title": {"text": f"{display_names[folder_name.upper()]}"},
        "tooltip": {
            "trigger": "axis",
            "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
            "triggerOn": 'mousemove',
        },
        "legend": {"data": ['Overall Accuracy']},
        "toolbox": {"feature": {"saveAsImage": {}}},
        "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
        "xAxis": [
            {
                "type": "category",
                "boundaryGap": False,
                "triggerEvent": True,
                "data": chart_data['Model'].tolist(),
            }
        ],
        "yAxis": [{"type": "value", 
                    "min": min_value,
                    "max": max_value, 
                    # "splitNumber": 10
                    }],
        "series": [{
                "name": f"{dataset_name.replace('_', '-')}",
                "type": "line",
                "data": chart_data[f'{dataset_name}'].tolist(),
            }],
    }
    
    events = {
        "click": "function(params) { return params.value }"
    }

    value = st_echarts(options=options, events=events, height="500px")
    
    if value != None:
        # print(value)
        nav_to(value)

    # if value != None:
    #     highlight_table_line(value)

    ### create table
    st.divider()
    # chart_data['Link'] = chart_data['Model'].map(links_dic)
    st.dataframe(chart_data,
                #  column_config = {
                #      "Link": st.column_config.LinkColumn(
                #          display_text= st.image(huggingface_image)
                #      ),
                #  }, 
                    hide_index = True, 
                    use_container_width=True)