File size: 7,048 Bytes
f5625dd 8764f41 f5625dd 308cc2e f5625dd a30610b 8764f41 f5625dd 4237375 a30610b 4237375 f5625dd 4237375 f5625dd 4237375 f5625dd 4237375 f5625dd 4237375 f5625dd 4237375 f5625dd a30610b f5625dd 8764f41 f5625dd 8764f41 f5625dd 4237375 f5625dd 4237375 8764f41 f5625dd 8764f41 f5625dd 8764f41 f5625dd 8764f41 f5625dd 4237375 f5625dd a30610b f5625dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import streamlit as st
import datasets
import numpy as np
def show_examples(category_name, dataset_name, model_lists, display_model_names):
st.divider()
sample_folder = f"./examples/{category_name}/{dataset_name}"
dataset = datasets.load_from_disk(sample_folder)
for index in range(len(dataset)):
with st.container():
st.markdown(f'##### Example-{index+1}')
col1, col2 = st.columns([0.3, 0.7], vertical_alignment="center")
# with col1:
st.audio(f'{sample_folder}/sample_{index}.wav', format="audio/wav")
# with col2:
# with st.container():
# custom_css = """
# <style>
# .my-container-question {
# background-color: #F5EEF8;
# padding: 10px;
# border-radius: 10px;
# height: auto;
# }
# </style>
# """
# st.markdown(custom_css, unsafe_allow_html=True)
# if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
# choices = dataset[index]['other_attributes']['choices']
# if isinstance(choices, str):
# choices_text = choices
# elif isinstance(choices, list):
# choices_text = ' '.join(i for i in choices)
# question_text = f"""<div class="my-container-question">
# <p>QUESTION: {dataset[index]['instruction']['text']}</p>
# <p>CHOICES: {choices_text}</p>
# </div>
# """
# else:
# question_text = f"""<div class="my-container-question">
# <p>QUESTION: {dataset[index]['instruction']['text']}</p>
# </div>"""
# st.markdown(question_text, unsafe_allow_html=True)
# with st.container():
# custom_css = """
# <style>
# .my-container-answer {
# background-color: #F9EBEA;
# padding: 10px;
# border-radius: 10px;
# height: auto;
# }
# </style>
# """
# st.markdown(custom_css, unsafe_allow_html=True)
# st.markdown(f"""<div class="my-container-answer">
# <p>CORRECT ANSWER: {dataset[index]['answer']['text']}</p>
# </div>""", unsafe_allow_html=True)
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
choices = dataset[index]['other_attributes']['choices']
if isinstance(choices, str):
choices_text = choices
elif isinstance(choices, list):
choices_text = ' '.join(i for i in choices)
question_text = f"""{dataset[index]['instruction']['text']} {choices_text}"""
else:
question_text = f"""{dataset[index]['instruction']['text']}"""
# st.divider()
with st.container():
custom_css = """
<style>
.my-container-table, p.my-container-text {
background-color: #fcf8dc;
padding: 10px;
border-radius: 5px;
font-size: 13px;
# height: 50px;
word-wrap: break-word
}
</style>
"""
st.markdown(custom_css, unsafe_allow_html=True)
model_lists.sort()
s = f"""<tr>
<td><b>REFERENCE</td>
<td><b>{question_text.replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')}
</td>
<td><b>{dataset[index]['answer']['text']}
</td>
</tr>
"""
if dataset_name in ['CN-College-Listen-MCQ-Test', 'DREAM-TTS-MCQ-Test']:
for model in model_lists:
try:
s += f"""<tr>
<td>{display_model_names[model]}</td>
<td>
{dataset[index][model]['text'].replace('Choices:', '<br>Choices:').replace('(A)', '<br>(A)').replace('(B)', '<br>(B)').replace('(C)', '<br>(C)')
}
</td>
<td>{dataset[index][model]['model_prediction']}</td>
</tr>"""
except:
print(f"{model} is not in {dataset_name}")
continue
else:
for model in model_lists:
try:
s += f"""<tr>
<td>{display_model_names[model]}</td>
<td>{dataset[index][model]['text']}</td>
<td>{dataset[index][model]['model_prediction']}</td>
</tr>"""
except:
print(f"{model} is not in {dataset_name}")
continue
body_details = f"""<table style="table-layout: fixed; width:100%">
<thead>
<tr style="text-align: center;">
<th style="width:20%">MODEL</th>
<th style="width:40%">QUESTION</th>
<th style="width:40%">MODEL PREDICTION</th>
</tr>
{s}
</thead>
</table>"""
st.markdown(f"""<div class="my-container-table">
{body_details}
</div>""", unsafe_allow_html=True)
st.text("")
st.divider()
|