File size: 9,415 Bytes
f5625dd
 
 
 
7774c4b
f5625dd
 
7774c4b
f5625dd
 
 
7774c4b
1c7afe3
 
7774c4b
 
 
 
 
 
 
 
 
f5625dd
d5e7bb7
f5625dd
 
 
 
 
 
 
 
 
 
937bc55
f5625dd
 
 
308cc2e
 
79b0b1e
 
 
 
 
 
 
308cc2e
 
7774c4b
 
 
4237375
7774c4b
 
4237375
8764f41
 
7774c4b
4237375
d5e7bb7
f5625dd
 
 
8764f41
 
 
f5625dd
8764f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5625dd
 
8764f41
 
f5625dd
 
 
 
 
 
 
 
 
 
 
308cc2e
f5625dd
4237375
f5625dd
 
 
 
 
308cc2e
f5625dd
 
 
 
1b4905d
f5625dd
 
 
 
 
 
 
 
 
 
7774c4b
 
 
f5625dd
 
 
 
 
 
 
 
7774c4b
 
8764f41
4237375
7632295
4237375
 
7774c4b
 
 
4237375
 
d5e7bb7
 
8764f41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4237375
8764f41
4237375
d5e7bb7
8764f41
4237375
 
 
 
 
 
 
 
 
 
 
8764f41
 
 
4237375
 
 
 
 
 
 
 
 
 
 
 
 
7632295
4237375
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7774c4b
4237375
 
 
7774c4b
 
 
 
 
 
 
 
 
 
f5625dd
 
 
8764f41
308cc2e
 
8764f41
f5625dd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import streamlit as st
import pandas as pd
import numpy as np
from streamlit_echarts import st_echarts
from streamlit.components.v1 import html
# from PIL import Image 
from app.show_examples import *
import pandas as pd

# huggingface_image = Image.open('style/huggingface.jpg')

# other info 
#path = "./AudioBench-Leaderboard/additional_info/Leaderboard-Rename.xlsx"
path = "./additional_info/Leaderboard-Rename.xlsx"
info_df = pd.read_excel(path)

# def nav_to(value):
#     try:
#         url = links_dic[str(value).lower()]
#         js = f'window.open("{url}", "_blank").then(r => window.parent.location.href);'
#         st_javascript(js)
#     except:
#         pass

def draw(folder_name, category_name, dataset_name, metrics, cus_sort=True):
    
    folder = f"./results/{metrics}/"

    display_names = {
        'SU': 'Speech Understanding',
        'ASU': 'Audio Scene Understanding',
        'VU': 'Voice Understanding'
    }
    
    data_path = f'{folder}/{category_name.lower()}.csv'
    chart_data = pd.read_csv(data_path).round(3)
    new_dataset_name = dataset_name.replace('-', '_').lower()
    chart_data = chart_data[['Model', new_dataset_name]]
    
    st.markdown("""
                <style>
                .stMultiSelect [data-baseweb=select] span {
                    max-width: 800px;
                    font-size: 0.9rem;
                    background-color: #3C6478 !important; /* Background color for selected items */
                    color: white; /* Change text color */
                    back
                }
                </style>
                """, unsafe_allow_html=True)
    
    # remap model names
    display_model_names = {key.strip() :val.strip() for key, val in zip(info_df['AudioBench'], info_df['Proper Display Name'])}
    chart_data['model_show'] = chart_data['Model'].map(display_model_names)

    models = st.multiselect("Please choose the model", 
                            sorted(chart_data['model_show'].tolist()), 
                            default = sorted(chart_data['model_show'].tolist()),
                            )
    
    chart_data = chart_data[chart_data['model_show'].isin(models)]
    chart_data = chart_data.sort_values(by=[new_dataset_name], ascending=cus_sort).dropna(axis=0)

    if len(chart_data) == 0:
        return

    # Get Values
    data_values = chart_data.iloc[:, 1]
    
    # Calculate Q1 and Q3
    q1 = data_values.quantile(0.25)
    q3 = data_values.quantile(0.75)

    # Calculate IQR
    iqr = q3 - q1

    # Define lower and upper bounds (1.5*IQR is a common threshold)
    lower_bound = q1 - 1.5 * iqr
    upper_bound = q3 + 1.5 * iqr

    # Filter data within the bounds
    filtered_data = data_values[(data_values >= lower_bound) & (data_values <= upper_bound)]

    # Calculate min and max values after outlier handling
    min_value = round(filtered_data.min() - 0.1 * filtered_data.min(), 3)
    max_value = round(filtered_data.max() + 0.1 * filtered_data.max(), 3)

    options = {
        #"title": {"text": f"{display_names[folder_name.upper()]}"},
        "title": {"text": f"{dataset_name}"},
        "tooltip": {
            "trigger": "axis",
            "axisPointer": {"type": "cross", "label": {"backgroundColor": "#6a7985"}},
            "triggerOn": 'mousemove',
        },
        "legend": {"data": ['Overall Accuracy']},
        "toolbox": {"feature": {"saveAsImage": {}}},
        "grid": {"left": "3%", "right": "4%", "bottom": "3%", "containLabel": True},
        "xAxis": [
            {
                "type": "category",
                "boundaryGap": True,
                "triggerEvent": True,
                "data":  chart_data['model_show'].tolist(),
            }
        ],
        "yAxis": [{"type": "value", 
                    "min": min_value,
                    "max": max_value, 
                    "boundaryGap": True
                    # "splitNumber": 10
                    }],
        "series": [{
                "name": f"{dataset_name}",
                "type": "bar",
                "data": chart_data[f'{new_dataset_name}'].tolist(),
            }],
    }
    
    events = {
        "click": "function(params) { return params.value }"
    }

    value = st_echarts(options=options, events=events, height="500px")
    
    # if value != None:
    #     # print(value)
    #     nav_to(value)

    # if value != None:
    #     highlight_table_line(value)

    '''
    Show table
    '''
    # st.divider()
    with st.container():
        # st.write("")
        st.markdown('##### Results')
        # custom_css = """
                   
        #             """
        # st.markdown(custom_css, unsafe_allow_html=True)
        
        model_link = {key.strip(): val for key, val in zip(info_df['Proper Display Name'], info_df['Link'])}

        chart_data['model_link'] = chart_data['model_show'].map(model_link) 

        chart_data_table = chart_data[['model_show', chart_data.columns[1], chart_data.columns[3]]]

        cur_dataset_name = chart_data_table.columns[1]
        print(cur_dataset_name)

        if cur_dataset_name in [
                            'librispeech_test_clean',
                            'librispeech_test_other',
                            'common_voice_15_en_test',
                            'peoples_speech_test',
                            'gigaspeech_test',
                            'earnings21_test',
                            'earnings22_test',
                            'tedlium3_test',
                            'tedlium3_long_form_test',
                            'imda_part1_asr_test',
                            'imda_part2_asr_test',

                            'aishell_asr_zh_test',
                            ]:
            
            styled_df = chart_data_table.style.highlight_min(
                subset=[chart_data_table.columns[1]], color='yellow'
            )
        else:

            chart_data_table = chart_data_table.sort_values(
                    by=chart_data_table.columns[1],
                    ascending=False
                ).reset_index(drop=True)

            styled_df = chart_data_table.style.highlight_max(
                subset=[chart_data_table.columns[1]], color='yellow'
            )

        st.dataframe(
                styled_df,
                column_config={
                    'model_show': 'Model',
                    chart_data_table.columns[1]: {'alignment': 'left'},
                    "model_link": st.column_config.LinkColumn(
                        "Model Link",
                        # # # help="",
                        # validate=r"^https://(.*?)$",
                        # # max_chars=100,
                        # display_text=r"\[(.*?)\]"
                    ),
                },
                hide_index=True,
                use_container_width=True
            )
        

        


        # s = ''
        # for model in models:
        #     try:
        #         # <td align="center"><input type="checkbox" name="select"></td>
        #         s += f"""<tr>
        #             <td><a href={model_link[model]}>{model}</a></td>
        #             <td>{chart_data[chart_data['Model'] == model][new_dataset_name].tolist()[0]}</td>
        #         </tr>"""
        #     except:
        #         # print(f"{model} is not in {dataset_name}")
        #         continue
        
        # # select all function
        # select_all_function = """<script>
        #     function toggle(source) {
        #         var checkboxes = document.querySelectorAll('input[type="checkbox"]');
        #         for (var i = 0; i < checkboxes.length; i++) {
        #             if (checkboxes[i] != source)
        #                 checkboxes[i].checked = source.checked;
        #         }
        #     }
        # </script>"""
        # st.markdown(f"""
        #             <div class="select_all">{select_all_function}</div>
        #             """, unsafe_allow_html=True)

        # info_body_details = f"""
        #     <table style="width:80%">
        #         <thead>
        #             <tr style="text-align: center;">
        #                 <th style="width:45%">MODEL</th>
        #                 <th style="width:45%">{dataset_name}</th>
        #             </tr>
        #             {s}
        #         </thead>
        #     </table>
        # """
        # #<th style="width:10%"><input type="checkbox" onclick="toggle(this);"></th>
        # # html_code = custom_css + select_all_function + info_body_details
        # # html(html_code, height = 300)
                    
        # st.markdown(f"""
        #             <div class="my-data-table">{info_body_details}</div>
        #             """, unsafe_allow_html=True)
        
        
    # st.dataframe(chart_data,
    #             #  column_config = {
    #             #      "Link": st.column_config.LinkColumn(
    #             #          display_text= st.image(huggingface_image)
    #             #      ),
    #             #  }, 
    #                 hide_index = True, 
    #                 use_container_width=True)
    '''
    show samples
    '''
    if dataset_name in ['Earnings21-Test', 'Earnings22-Test', 'Tedlium3-Test', 'Tedlium3-Long-form-Test']:
        pass
    else:
        show_examples(category_name, dataset_name, chart_data['Model'].tolist(), display_model_names)