import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder
LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
elif os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
return clean[0].upper() if clean else None
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboard.csv",
repo_id="SondosMB/ss", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
def load_leaderboard():
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Valid Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
})
return pd.read_csv(LEADERBOARD_FILE)
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
predictions_df = pd.read_csv(prediction_file.name)
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
}
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
initialize_leaderboard_file()
# Function to set default mode
# Function to set default mode
import gradio as gr
# Ensure CSS is correctly defined
css_tech_theme = """
body {
background-color: #f4f6fa;
color: #333333;
font-family: 'Roboto', sans-serif;
line-height: 1.8;
}
.center-content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
margin: 30px 0;
padding: 20px;
}
h1, h2 {
color: #5e35b1;
margin: 15px 0;
text-align: center;
}
img {
width: 100px;
height: 100px;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css_tech_theme) as demo:
gr.Markdown("""
🏆 Mobile-MMLU Benchmark Competition
🌟 Welcome to the Competition
Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions,
view the leaderboard, and track your performance!
""")
with gr.Tabs(elem_id="tabs"):
with gr.TabItem("📖 Overview"):
gr.Markdown("""
**Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields**.
---
## What is Mobile-MMLU?
Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
---
## How It Works
1. **Download the Dataset**
Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
2. **Generate Predictions**
Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
3. **Submit Predictions**
Upload your predictions on this platform.
4. **Evaluation**
Submissions are scored on accuracy.
5. **Leaderboard**
View real-time rankings on the leaderboard.
---
""")
with gr.TabItem("📤 Submission"):
with gr.Row():
file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
with gr.Row():
overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
eval_button = gr.Button("Evaluate")
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
def handle_evaluation(file, model_name, add_to_leaderboard):
status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
if leaderboard.empty:
overall_accuracy = 0
else:
overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
return status, overall_accuracy
eval_button.click(
handle_evaluation,
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
outputs=[eval_status, overall_accuracy_display],
)
with gr.TabItem("🏅 Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
demo.launch()
# # Custom CSS to match website style
# # Define CSS to match a modern, professional design
# # Define enhanced CSS for the entire layout
# css_tech_theme = """
# body {
# font-family: 'Roboto', sans-serif;
# background-color: #f4f6fa;
# color: #333333;
# margin: 0;
# padding: 0;
# }
# /* Header Styling */
# header {
# text-align: center;
# padding: 60px 20px;
# background: linear-gradient(135deg, #6a1b9a, #64b5f6);
# color: #ffffff;
# border-radius: 12px;
# margin-bottom: 30px;
# box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2);
# }
# header h1 {
# font-size: 3.5em;
# font-weight: bold;
# margin-bottom: 10px;
# }
# header h2 {
# font-size: 2em;
# margin-bottom: 15px;
# }
# header p {
# font-size: 1.2em;
# line-height: 1.8;
# }
# .header-buttons {
# display: flex;
# justify-content: center;
# gap: 15px;
# margin-top: 20px;
# }
# .header-buttons a {
# text-decoration: none;
# font-size: 1.1em;
# padding: 15px 30px;
# border-radius: 30px;
# font-weight: bold;
# background: #ffffff;
# color: #6a1b9a;
# transition: transform 0.3s, background 0.3s;
# box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
# }
# .header-buttons a:hover {
# background: #64b5f6;
# color: #ffffff;
# transform: scale(1.05);
# }
# /* Pre-Tabs Section */
# .pre-tabs {
# text-align: center;
# padding: 40px 20px;
# background: linear-gradient(135deg, #ffffff, #f9fafb);
# border-top: 5px solid #64b5f6;
# border-bottom: 5px solid #6a1b9a;
# }
# .pre-tabs h2 {
# font-size: 2.5em;
# color: #333333;
# margin-bottom: 15px;
# }
# .pre-tabs p {
# font-size: 1.2em;
# color: #555555;
# line-height: 1.8;
# }
# /* Tabs Section */
# .tabs {
# margin: 0 auto;
# padding: 20px;
# background: #ffffff;
# border-radius: 12px;
# box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
# max-width: 1200px;
# }
# /* Post-Tabs Section */
# .post-tabs {
# text-align: center;
# padding: 40px 20px;
# background: linear-gradient(135deg, #64b5f6, #6a1b9a);
# color: #ffffff;
# border-radius: 12px;
# margin-top: 30px;
# }
# .post-tabs h2 {
# font-size: 2.5em;
# margin-bottom: 15px;
# }
# .post-tabs p {
# font-size: 1.2em;
# line-height: 1.8;
# margin-bottom: 20px;
# }
# .post-tabs a {
# text-decoration: none;
# font-size: 1.1em;
# padding: 15px 30px;
# border-radius: 30px;
# font-weight: bold;
# background: #ffffff;
# color: #6a1b9a;
# transition: transform 0.3s, background 0.3s;
# box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);
# }
# .post-tabs a:hover {
# background: #6a1b9a;
# color: #ffffff;
# transform: scale(1.05);
# }
# /* Footer */
# footer {
# background: linear-gradient(135deg, #6a1b9a, #8e44ad);
# color: #ffffff;
# text-align: center;
# padding: 40px 20px;
# margin-top: 30px;
# border-radius: 12px;
# box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2);
# }
# footer h2 {
# font-size: 1.8em;
# margin-bottom: 15px;
# }
# footer p {
# font-size: 1.1em;
# line-height: 1.6;
# margin-bottom: 20px;
# }
# footer .social-links {
# display: flex;
# justify-content: center;
# gap: 15px;
# margin-top: 20px;
# }
# footer .social-links a {
# text-decoration: none;
# font-size: 1.1em;
# padding: 10px 20px;
# border-radius: 8px;
# font-weight: bold;
# background: #ffffff;
# color: #6a1b9a;
# transition: transform 0.3s, background 0.3s;
# }
# footer .social-links a:hover {
# background: #64b5f6;
# color: #ffffff;
# transform: scale(1.1);
# }
# """
# # Gradio Interface
# with gr.Blocks(css=css_tech_theme) as demo:
# # Header Section
# gr.Markdown("""
#
# """)
# # Pre-Tabs Section
# gr.Markdown("""
#
# Why Participate?
#
# The Mobile-MMLU Benchmark Competition is a unique opportunity to test your LLMs against
# real-world scenarios. Compete to drive innovation and make your mark in mobile AI.
#
#
# """)
# # Tabs Section
# with gr.Tabs(elem_id="tabs"):
# # Overview Tab
# with gr.TabItem("📖 Overview"):
# gr.Markdown("""
#
#
About the Competition
#
# The **Mobile-MMLU Benchmark Competition** is an exciting challenge for mobile-optimized
# LLMs. Compete to achieve the highest accuracy and contribute to advancements in mobile AI.
#
#
How It Works
#
# - 1️⃣ Download the Dataset: Access the dataset and instructions on our
# GitHub page.
# - 2️⃣ Generate Predictions: Use your LLM to answer the dataset questions.
# Format your predictions as a CSV file.
# - 3️⃣ Submit Predictions: Upload your predictions on this platform.
# - 4️⃣ Evaluation: Submissions are scored based on accuracy.
# - 5️⃣ Leaderboard: View real-time rankings on the leaderboard.
#
#
# """)
# # Submission Tab
# with gr.TabItem("📤 Submission"):
# gr.Markdown("Submit Your Predictions
")
# with gr.Row():
# file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
# with gr.Row():
# overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
# eval_button = gr.Button("Evaluate")
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
# def handle_evaluation(file, model_name, add_to_leaderboard):
# return "Evaluation complete. Model added to leaderboard.", 85.0
# eval_button.click(
# handle_evaluation,
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
# outputs=[eval_status, overall_accuracy_display],
# )
# # Leaderboard Tab
# with gr.TabItem("🏅 Leaderboard"):
# leaderboard_table = gr.Dataframe(
# value=load_leaderboard(), # Initial data
# label="Leaderboard",
# interactive=False,
# wrap=True,)
# refresh_button = gr.Button("Refresh Leaderboard")
# refresh_button.click(
# load_leaderboard, # Fetch latest data
# inputs=[],
# outputs=[leaderboard_table],
# )
# # Post-Tabs Section
# gr.Markdown("""
#
# Ready to Compete?
#
# Submit your predictions today and make your mark in advancing mobile AI technologies.
# Show the world what your model can achieve!
#
# Start Submitting
#
# """)
# # Footer Section
# gr.Markdown("""
#
# """)
# # Launch the interface
# demo.launch()