import gradio as gr import pandas as pd import os import re from datetime import datetime from huggingface_hub import hf_hub_download from huggingface_hub import HfApi, HfFolder LEADERBOARD_FILE = "leaderboard.csv" GROUND_TRUTH_FILE = "ground_truth.csv" LAST_UPDATED = datetime.now().strftime("%B %d, %Y") # Ensure authentication and suppress warnings os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1" HF_TOKEN = os.getenv("HF_TOKEN") if not HF_TOKEN: raise ValueError("HF_TOKEN environment variable is not set or invalid.") def initialize_leaderboard_file(): """ Ensure the leaderboard file exists and has the correct headers. """ if not os.path.exists(LEADERBOARD_FILE): pd.DataFrame(columns=[ "Model Name", "Overall Accuracy", "Valid Accuracy", "Correct Predictions", "Total Questions", "Timestamp" ]).to_csv(LEADERBOARD_FILE, index=False) elif os.stat(LEADERBOARD_FILE).st_size == 0: pd.DataFrame(columns=[ "Model Name", "Overall Accuracy", "Valid Accuracy", "Correct Predictions", "Total Questions", "Timestamp" ]).to_csv(LEADERBOARD_FILE, index=False) def clean_answer(answer): if pd.isna(answer): return None answer = str(answer) clean = re.sub(r'[^A-Da-d]', '', answer) return clean[0].upper() if clean else None def update_leaderboard(results): """ Append new submission results to the leaderboard file and push updates to the Hugging Face repository. """ new_entry = { "Model Name": results['model_name'], "Overall Accuracy": round(results['overall_accuracy'] * 100, 2), "Valid Accuracy": round(results['valid_accuracy'] * 100, 2), "Correct Predictions": results['correct_predictions'], "Total Questions": results['total_questions'], "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), } try: # Update the local leaderboard file new_entry_df = pd.DataFrame([new_entry]) file_exists = os.path.exists(LEADERBOARD_FILE) new_entry_df.to_csv( LEADERBOARD_FILE, mode='a', # Append mode index=False, header=not file_exists # Write header only if the file is new ) print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}") # Push the updated file to the Hugging Face repository using HTTP API api = HfApi() token = HfFolder.get_token() api.upload_file( path_or_fileobj=LEADERBOARD_FILE, path_in_repo="leaderboard.csv", repo_id="SondosMB/ss", # Your Space repository repo_type="space", token=token ) print("Leaderboard changes pushed to Hugging Face repository.") except Exception as e: print(f"Error updating leaderboard file: {e}") def load_leaderboard(): if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0: return pd.DataFrame({ "Model Name": [], "Overall Accuracy": [], "Valid Accuracy": [], "Correct Predictions": [], "Total Questions": [], "Timestamp": [], }) return pd.read_csv(LEADERBOARD_FILE) def evaluate_predictions(prediction_file, model_name, add_to_leaderboard): try: ground_truth_path = hf_hub_download( repo_id="SondosMB/ground-truth-dataset", filename="ground_truth.csv", repo_type="dataset", use_auth_token=True ) ground_truth_df = pd.read_csv(ground_truth_path) except FileNotFoundError: return "Ground truth file not found in the dataset repository.", load_leaderboard() except Exception as e: return f"Error loading ground truth: {e}", load_leaderboard() if not prediction_file: return "Prediction file not uploaded.", load_leaderboard() try: predictions_df = pd.read_csv(prediction_file.name) merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) valid_predictions = merged_df.dropna(subset=['pred_answer']) correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum() total_predictions = len(merged_df) total_valid_predictions = len(valid_predictions) overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0 valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0 results = { 'model_name': model_name if model_name else "Unknown Model", 'overall_accuracy': overall_accuracy, 'valid_accuracy': valid_accuracy, 'correct_predictions': correct_predictions, 'total_questions': total_predictions, } if add_to_leaderboard: update_leaderboard(results) return "Evaluation completed and added to leaderboard.", load_leaderboard() else: return "Evaluation completed but not added to leaderboard.", load_leaderboard() except Exception as e: return f"Error during evaluation: {str(e)}", load_leaderboard() initialize_leaderboard_file() # Function to set default mode # Function to set default mode import gradio as gr # # Custom CSS to match website style # # Define CSS to match a modern, professional design # # Define enhanced CSS for the entire layout css_tech_theme = """ body { font-family: 'Roboto', sans-serif; background-color: #f4f6fa; color: #333333; margin: 0; padding: 0; } /* Header Styling */ header { text-align: center; padding: 60px 20px; background: linear-gradient(135deg, #6a1b9a, #64b5f6); color: #ffffff; border-radius: 12px; margin-bottom: 30px; box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2); } header h1 { font-size: 3.5em; font-weight: bold; margin-bottom: 10px; } header h2 { font-size: 2em; margin-bottom: 15px; } header p { font-size: 1.2em; line-height: 1.8; } .header-buttons { display: flex; justify-content: center; gap: 15px; margin-top: 20px; } .header-buttons a { text-decoration: none; font-size: 1.1em; padding: 15px 30px; border-radius: 30px; font-weight: bold; background: #ffffff; color: #6a1b9a; transition: transform 0.3s, background 0.3s; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); } .header-buttons a:hover { background: #64b5f6; color: #ffffff; transform: scale(1.05); } /* Pre-Tabs Section */ .pre-tabs { text-align: center; padding: 40px 20px; background: linear-gradient(135deg, #ffffff, #f9fafb); border-top: 5px solid #64b5f6; border-bottom: 5px solid #6a1b9a; } .pre-tabs h2 { font-size: 2.5em; color: #333333; margin-bottom: 15px; } .pre-tabs p { font-size: 1.2em; color: #555555; line-height: 1.8; } /* Tabs Section */ .tabs { margin: 0 auto; padding: 20px; background: #ffffff; border-radius: 12px; box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); max-width: 1200px; } /* Post-Tabs Section */ .post-tabs { text-align: center; padding: 40px 20px; background: linear-gradient(135deg, #64b5f6, #6a1b9a); color: #ffffff; border-radius: 12px; margin-top: 30px; } .post-tabs h2 { font-size: 2.5em; margin-bottom: 15px; } .post-tabs p { font-size: 1.2em; line-height: 1.8; margin-bottom: 20px; } .post-tabs a { text-decoration: none; font-size: 1.1em; padding: 15px 30px; border-radius: 30px; font-weight: bold; background: #ffffff; color: #6a1b9a; transition: transform 0.3s, background 0.3s; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); } .post-tabs a:hover { background: #6a1b9a; color: #ffffff; transform: scale(1.05); } /* Footer */ footer { background: linear-gradient(135deg, #6a1b9a, #8e44ad); color: #ffffff; text-align: center; padding: 40px 20px; margin-top: 30px; border-radius: 12px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); } footer h2 { font-size: 1.8em; margin-bottom: 15px; } footer p { font-size: 1.1em; line-height: 1.6; margin-bottom: 20px; } footer .social-links { display: flex; justify-content: center; gap: 15px; margin-top: 20px; } footer .social-links a { text-decoration: none; font-size: 1.1em; padding: 10px 20px; border-radius: 8px; font-weight: bold; background: #ffffff; color: #6a1b9a; transition: transform 0.3s, background 0.3s; } footer .social-links a:hover { background: #64b5f6; color: #ffffff; transform: scale(1.1); } """ # Ensure CSS is correctly defined # css_tech_theme = """ # body { # background-color: #f4f6fa; # color: #333333; # font-family: 'Roboto', sans-serif; # line-height: 1.8; # } # .center-content { # display: flex; # flex-direction: column; # align-items: center; # justify-content: center; # text-align: center; # margin: 30px 0; # padding: 20px; # } # h1, h2 { # color: #5e35b1; # margin: 15px 0; # text-align: center; # } # img { # width: 100px; # height: 100px; # } # """ # Create the Gradio Interface with gr.Blocks(css=css_tech_theme) as demo: gr.Markdown("""

🏆 Mobile-MMLU Benchmark Competition

🌟 Welcome to the Competition

Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions, view the leaderboard, and track your performance!


""") with gr.Tabs(elem_id="tabs"): with gr.TabItem("📖 Overview"): gr.Markdown(""" **Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields**. --- ## What is Mobile-MMLU? Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy. --- ## How It Works 1. **Download the Dataset** Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo). 2. **Generate Predictions** Use your LLM to answer the dataset questions. Format your predictions as a CSV file. 3. **Submit Predictions** Upload your predictions on this platform. 4. **Evaluation** Submissions are scored on accuracy. 5. **Leaderboard** View real-time rankings on the leaderboard. --- """) with gr.TabItem("📤 Submission"): with gr.Row(): file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True) model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name") with gr.Row(): overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False) add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True) eval_button = gr.Button("Evaluate") eval_status = gr.Textbox(label="Evaluation Status", interactive=False) def handle_evaluation(file, model_name, add_to_leaderboard): status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard) if leaderboard.empty: overall_accuracy = 0 else: overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"] return status, overall_accuracy eval_button.click( handle_evaluation, inputs=[file_input, model_name_input, add_to_leaderboard_checkbox], outputs=[eval_status, overall_accuracy_display], ) with gr.TabItem("🏅 Leaderboard"): leaderboard_table = gr.Dataframe( value=load_leaderboard(), label="Leaderboard", interactive=False, wrap=True, ) refresh_button = gr.Button("Refresh Leaderboard") refresh_button.click( lambda: load_leaderboard(), inputs=[], outputs=[leaderboard_table], ) gr.Markdown(f"Last updated on **{LAST_UPDATED}**") demo.launch() # # Custom CSS to match website style # # Define CSS to match a modern, professional design # # Define enhanced CSS for the entire layout # css_tech_theme = """ # body { # font-family: 'Roboto', sans-serif; # background-color: #f4f6fa; # color: #333333; # margin: 0; # padding: 0; # } # /* Header Styling */ # header { # text-align: center; # padding: 60px 20px; # background: linear-gradient(135deg, #6a1b9a, #64b5f6); # color: #ffffff; # border-radius: 12px; # margin-bottom: 30px; # box-shadow: 0 6px 20px rgba(0, 0, 0, 0.2); # } # header h1 { # font-size: 3.5em; # font-weight: bold; # margin-bottom: 10px; # } # header h2 { # font-size: 2em; # margin-bottom: 15px; # } # header p { # font-size: 1.2em; # line-height: 1.8; # } # .header-buttons { # display: flex; # justify-content: center; # gap: 15px; # margin-top: 20px; # } # .header-buttons a { # text-decoration: none; # font-size: 1.1em; # padding: 15px 30px; # border-radius: 30px; # font-weight: bold; # background: #ffffff; # color: #6a1b9a; # transition: transform 0.3s, background 0.3s; # box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); # } # .header-buttons a:hover { # background: #64b5f6; # color: #ffffff; # transform: scale(1.05); # } # /* Pre-Tabs Section */ # .pre-tabs { # text-align: center; # padding: 40px 20px; # background: linear-gradient(135deg, #ffffff, #f9fafb); # border-top: 5px solid #64b5f6; # border-bottom: 5px solid #6a1b9a; # } # .pre-tabs h2 { # font-size: 2.5em; # color: #333333; # margin-bottom: 15px; # } # .pre-tabs p { # font-size: 1.2em; # color: #555555; # line-height: 1.8; # } # /* Tabs Section */ # .tabs { # margin: 0 auto; # padding: 20px; # background: #ffffff; # border-radius: 12px; # box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1); # max-width: 1200px; # } # /* Post-Tabs Section */ # .post-tabs { # text-align: center; # padding: 40px 20px; # background: linear-gradient(135deg, #64b5f6, #6a1b9a); # color: #ffffff; # border-radius: 12px; # margin-top: 30px; # } # .post-tabs h2 { # font-size: 2.5em; # margin-bottom: 15px; # } # .post-tabs p { # font-size: 1.2em; # line-height: 1.8; # margin-bottom: 20px; # } # .post-tabs a { # text-decoration: none; # font-size: 1.1em; # padding: 15px 30px; # border-radius: 30px; # font-weight: bold; # background: #ffffff; # color: #6a1b9a; # transition: transform 0.3s, background 0.3s; # box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1); # } # .post-tabs a:hover { # background: #6a1b9a; # color: #ffffff; # transform: scale(1.05); # } # /* Footer */ # footer { # background: linear-gradient(135deg, #6a1b9a, #8e44ad); # color: #ffffff; # text-align: center; # padding: 40px 20px; # margin-top: 30px; # border-radius: 12px; # box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); # } # footer h2 { # font-size: 1.8em; # margin-bottom: 15px; # } # footer p { # font-size: 1.1em; # line-height: 1.6; # margin-bottom: 20px; # } # footer .social-links { # display: flex; # justify-content: center; # gap: 15px; # margin-top: 20px; # } # footer .social-links a { # text-decoration: none; # font-size: 1.1em; # padding: 10px 20px; # border-radius: 8px; # font-weight: bold; # background: #ffffff; # color: #6a1b9a; # transition: transform 0.3s, background 0.3s; # } # footer .social-links a:hover { # background: #64b5f6; # color: #ffffff; # transform: scale(1.1); # } # """ # # Gradio Interface # with gr.Blocks(css=css_tech_theme) as demo: # # Header Section # gr.Markdown(""" #
#

🏆 Mobile-MMLU Benchmark Competition

#

🚀 Push the Boundaries of Mobile AI

#

# Test and optimize mobile-compatible Large Language Models (LLMs) with cutting-edge benchmarks # across 80 fields and over 16,000 questions. #

#
# Learn More # Submit Predictions # View Leaderboard #
#
# """) # # Pre-Tabs Section # gr.Markdown(""" #
#

Why Participate?

#

# The Mobile-MMLU Benchmark Competition is a unique opportunity to test your LLMs against # real-world scenarios. Compete to drive innovation and make your mark in mobile AI. #

#
# """) # # Tabs Section # with gr.Tabs(elem_id="tabs"): # # Overview Tab # with gr.TabItem("📖 Overview"): # gr.Markdown(""" #
#

About the Competition

#

# The **Mobile-MMLU Benchmark Competition** is an exciting challenge for mobile-optimized # LLMs. Compete to achieve the highest accuracy and contribute to advancements in mobile AI. #

#

How It Works

# #
# """) # # Submission Tab # with gr.TabItem("📤 Submission"): # gr.Markdown("

Submit Your Predictions

") # with gr.Row(): # file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True) # model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name") # with gr.Row(): # overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False) # add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True) # eval_button = gr.Button("Evaluate") # eval_status = gr.Textbox(label="Evaluation Status", interactive=False) # def handle_evaluation(file, model_name, add_to_leaderboard): # return "Evaluation complete. Model added to leaderboard.", 85.0 # eval_button.click( # handle_evaluation, # inputs=[file_input, model_name_input, add_to_leaderboard_checkbox], # outputs=[eval_status, overall_accuracy_display], # ) # # Leaderboard Tab # with gr.TabItem("🏅 Leaderboard"): # leaderboard_table = gr.Dataframe( # value=load_leaderboard(), # Initial data # label="Leaderboard", # interactive=False, # wrap=True,) # refresh_button = gr.Button("Refresh Leaderboard") # refresh_button.click( # load_leaderboard, # Fetch latest data # inputs=[], # outputs=[leaderboard_table], # ) # # Post-Tabs Section # gr.Markdown(""" #
#

Ready to Compete?

#

# Submit your predictions today and make your mark in advancing mobile AI technologies. # Show the world what your model can achieve! #

# Start Submitting #
# """) # # Footer Section # gr.Markdown(""" # # """) # # Launch the interface # demo.launch()