Update app.py
Browse files
app.py
CHANGED
@@ -1,191 +1,36 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import pandas as pd
|
3 |
-
# import os
|
4 |
-
# import re
|
5 |
-
# from datetime import datetime
|
6 |
-
|
7 |
-
# LEADERBOARD_FILE = "leaderboard.csv" # File to store leaderboard data
|
8 |
-
|
9 |
-
# def clean_answer(answer):
|
10 |
-
# if pd.isna(answer):
|
11 |
-
# return None
|
12 |
-
# answer = str(answer)
|
13 |
-
# clean = re.sub(r'[^A-Da-d]', '', answer)
|
14 |
-
# if clean:
|
15 |
-
# first_letter = clean[0].upper()
|
16 |
-
# if first_letter in ['A', 'B', 'C', 'D']:
|
17 |
-
# return first_letter
|
18 |
-
# return None
|
19 |
-
|
20 |
-
# def write_evaluation_results(results, output_file):
|
21 |
-
# os.makedirs(os.path.dirname(output_file) if os.path.dirname(output_file) else '.', exist_ok=True)
|
22 |
-
# timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
23 |
-
|
24 |
-
# output_text = [
|
25 |
-
# f"Evaluation Results for Model: {results['model_name']}",
|
26 |
-
# f"Timestamp: {timestamp}",
|
27 |
-
# "-" * 50,
|
28 |
-
# f"Overall Accuracy (including invalid): {results['overall_accuracy']:.2%}",
|
29 |
-
# f"Accuracy (valid predictions only): {results['valid_accuracy']:.2%}",
|
30 |
-
# f"Total Questions: {results['total_questions']}",
|
31 |
-
# f"Valid Predictions: {results['valid_predictions']}",
|
32 |
-
# f"Invalid/Malformed Predictions: {results['invalid_predictions']}",
|
33 |
-
# f"Correct Predictions: {results['correct_predictions']}",
|
34 |
-
# "\nPerformance by Field:",
|
35 |
-
# "-" * 50
|
36 |
-
# ]
|
37 |
-
|
38 |
-
# for field, metrics in results['field_performance'].items():
|
39 |
-
# field_results = [
|
40 |
-
# f"\nField: {field}",
|
41 |
-
# f"Accuracy (including invalid): {metrics['accuracy']:.2%}",
|
42 |
-
# f"Accuracy (valid only): {metrics['valid_accuracy']:.2%}",
|
43 |
-
# f"Correct: {metrics['correct']}/{metrics['total']}",
|
44 |
-
# f"Invalid predictions: {metrics['invalid']}"
|
45 |
-
# ]
|
46 |
-
# output_text.extend(field_results)
|
47 |
-
|
48 |
-
# with open(output_file, 'w') as f:
|
49 |
-
# f.write('\n'.join(output_text))
|
50 |
-
# print('\n'.join(output_text))
|
51 |
-
# print(f"\nResults have been saved to: {output_file}")
|
52 |
-
|
53 |
-
# def update_leaderboard(results):
|
54 |
-
# # Add results to the leaderboard file
|
55 |
-
# new_entry = {
|
56 |
-
# "Model Name": results['model_name'],
|
57 |
-
# "Overall Accuracy": f"{results['overall_accuracy']:.2%}",
|
58 |
-
# "Valid Accuracy": f"{results['valid_accuracy']:.2%}",
|
59 |
-
# "Correct Predictions": results['correct_predictions'],
|
60 |
-
# "Total Questions": results['total_questions'],
|
61 |
-
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
62 |
-
# }
|
63 |
-
# leaderboard_df = pd.DataFrame([new_entry])
|
64 |
-
# if os.path.exists(LEADERBOARD_FILE):
|
65 |
-
# existing_df = pd.read_csv(LEADERBOARD_FILE)
|
66 |
-
# leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True)
|
67 |
-
# leaderboard_df.to_csv(LEADERBOARD_FILE, index=False)
|
68 |
-
|
69 |
-
# def display_leaderboard():
|
70 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
71 |
-
# return "Leaderboard is empty."
|
72 |
-
# leaderboard_df = pd.read_csv(LEADERBOARD_FILE)
|
73 |
-
# return leaderboard_df.to_markdown(index=False)
|
74 |
-
|
75 |
-
# def evaluate_predictions(prediction_file):
|
76 |
-
# ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file
|
77 |
-
# if not prediction_file:
|
78 |
-
# return "Prediction file not uploaded", None
|
79 |
-
|
80 |
-
# if not os.path.exists(ground_truth_file):
|
81 |
-
# return "Ground truth file not found", None
|
82 |
-
|
83 |
-
# try:
|
84 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
85 |
-
# ground_truth_df = pd.read_csv(ground_truth_file)
|
86 |
-
|
87 |
-
# # Extract model name
|
88 |
-
# try:
|
89 |
-
# filename = os.path.basename(prediction_file.name)
|
90 |
-
# if "_" in filename and "." in filename:
|
91 |
-
# model_name = filename.split('_')[1].split('.')[0]
|
92 |
-
# else:
|
93 |
-
# model_name = "unknown_model"
|
94 |
-
# except IndexError:
|
95 |
-
# model_name = "unknown_model"
|
96 |
-
|
97 |
-
# # Merge dataframes
|
98 |
-
# merged_df = pd.merge(
|
99 |
-
# predictions_df,
|
100 |
-
# ground_truth_df,
|
101 |
-
# on='question_id',
|
102 |
-
# how='inner'
|
103 |
-
# )
|
104 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
105 |
-
# invalid_predictions = merged_df['pred_answer'].isna().sum()
|
106 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
107 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
108 |
-
# total_predictions = len(merged_df)
|
109 |
-
# total_valid_predictions = len(valid_predictions)
|
110 |
-
|
111 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
112 |
-
# valid_accuracy = (
|
113 |
-
# correct_predictions / total_valid_predictions
|
114 |
-
# if total_valid_predictions > 0
|
115 |
-
# else 0
|
116 |
-
# )
|
117 |
-
|
118 |
-
# field_metrics = {}
|
119 |
-
# for field in merged_df['Field'].unique():
|
120 |
-
# field_data = merged_df[merged_df['Field'] == field]
|
121 |
-
# field_valid_data = field_data.dropna(subset=['pred_answer'])
|
122 |
-
|
123 |
-
# field_correct = (field_valid_data['pred_answer'] == field_valid_data['Answer']).sum()
|
124 |
-
# field_total = len(field_data)
|
125 |
-
# field_valid_total = len(field_valid_data)
|
126 |
-
# field_invalid = field_total - field_valid_total
|
127 |
-
|
128 |
-
# field_metrics[field] = {
|
129 |
-
# 'accuracy': field_correct / field_total if field_total > 0 else 0,
|
130 |
-
# 'valid_accuracy': field_correct / field_valid_total if field_valid_total > 0 else 0,
|
131 |
-
# 'correct': field_correct,
|
132 |
-
# 'total': field_total,
|
133 |
-
# 'invalid': field_invalid
|
134 |
-
# }
|
135 |
-
|
136 |
-
# results = {
|
137 |
-
# 'model_name': model_name,
|
138 |
-
# 'overall_accuracy': overall_accuracy,
|
139 |
-
# 'valid_accuracy': valid_accuracy,
|
140 |
-
# 'total_questions': total_predictions,
|
141 |
-
# 'valid_predictions': total_valid_predictions,
|
142 |
-
# 'invalid_predictions': invalid_predictions,
|
143 |
-
# 'correct_predictions': correct_predictions,
|
144 |
-
# 'field_performance': field_metrics
|
145 |
-
# }
|
146 |
-
|
147 |
-
# update_leaderboard(results)
|
148 |
-
# output_file = "evaluation_results.txt"
|
149 |
-
# write_evaluation_results(results, output_file)
|
150 |
-
# return "Evaluation completed successfully! Leaderboard updated.", output_file
|
151 |
-
|
152 |
-
# except Exception as e:
|
153 |
-
# return f"Error during evaluation: {str(e)}", None
|
154 |
-
|
155 |
-
# # Gradio Interface
|
156 |
-
# description = "Upload a prediction CSV file to evaluate predictions against the ground truth and update the leaderboard."
|
157 |
-
|
158 |
-
# demo = gr.Blocks()
|
159 |
-
|
160 |
-
# with demo:
|
161 |
-
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
162 |
-
# with gr.Tab("Evaluate"):
|
163 |
-
# file_input = gr.File(label="Upload Prediction CSV")
|
164 |
-
# eval_status = gr.Textbox(label="Evaluation Status")
|
165 |
-
# eval_results_file = gr.File(label="Download Evaluation Results")
|
166 |
-
# eval_button = gr.Button("Evaluate")
|
167 |
-
# eval_button.click(
|
168 |
-
# evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file]
|
169 |
-
# )
|
170 |
-
# with gr.Tab("Leaderboard"):
|
171 |
-
# leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False)
|
172 |
-
# refresh_button = gr.Button("Refresh Leaderboard")
|
173 |
-
# refresh_button.click(display_leaderboard, outputs=leaderboard_text)
|
174 |
-
|
175 |
-
# if __name__ == "__main__":
|
176 |
-
# demo.launch()
|
177 |
-
|
178 |
|
|
|
179 |
# import gradio as gr
|
180 |
# import pandas as pd
|
181 |
# import os
|
182 |
# import re
|
183 |
# from datetime import datetime
|
184 |
|
185 |
-
# LEADERBOARD_FILE = "leaderboard.csv" # File to store
|
186 |
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
# def clean_answer(answer):
|
|
|
|
|
|
|
189 |
# if pd.isna(answer):
|
190 |
# return None
|
191 |
# answer = str(answer)
|
@@ -194,49 +39,9 @@
|
|
194 |
# return clean[0].upper()
|
195 |
# return None
|
196 |
|
197 |
-
|
198 |
-
# def evaluate_predictions(prediction_file):
|
199 |
-
# ground_truth_file = "ground_truth.csv"
|
200 |
-
# if not os.path.exists(ground_truth_file):
|
201 |
-
# return "Ground truth file not found."
|
202 |
-
# if not prediction_file:
|
203 |
-
# return "Prediction file not uploaded."
|
204 |
-
|
205 |
-
# try:
|
206 |
-
# predictions_df = pd.read_csv(prediction_file.name)
|
207 |
-
# ground_truth_df = pd.read_csv(ground_truth_file)
|
208 |
-
# model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
209 |
-
|
210 |
-
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
211 |
-
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
212 |
-
|
213 |
-
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
214 |
-
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
215 |
-
# total_predictions = len(merged_df)
|
216 |
-
# total_valid_predictions = len(valid_predictions)
|
217 |
-
|
218 |
-
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
219 |
-
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
220 |
-
|
221 |
-
# results = {
|
222 |
-
# 'model_name': model_name,
|
223 |
-
# 'overall_accuracy': overall_accuracy,
|
224 |
-
# 'valid_accuracy': valid_accuracy,
|
225 |
-
# 'correct_predictions': correct_predictions,
|
226 |
-
# 'total_questions': total_predictions,
|
227 |
-
# }
|
228 |
-
|
229 |
-
# update_leaderboard(results)
|
230 |
-
# return "Evaluation completed successfully! Leaderboard updated."
|
231 |
-
# except Exception as e:
|
232 |
-
# return f"Error during evaluation: {str(e)}"
|
233 |
-
|
234 |
-
|
235 |
-
# # Build Gradio App
|
236 |
-
|
237 |
# def update_leaderboard(results):
|
238 |
# """
|
239 |
-
#
|
240 |
# """
|
241 |
# new_entry = {
|
242 |
# "Model Name": results['model_name'],
|
@@ -247,23 +52,14 @@
|
|
247 |
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
248 |
# }
|
249 |
|
250 |
-
# # Convert new entry to DataFrame
|
251 |
# new_entry_df = pd.DataFrame([new_entry])
|
252 |
-
|
253 |
-
# # Append to leaderboard file
|
254 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
255 |
-
# # If file does not exist, create it with headers
|
256 |
-
# new_entry_df.to_csv(LEADERBOARD_FILE, index=False)
|
257 |
-
# else:
|
258 |
-
# # Append without headers
|
259 |
-
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
260 |
-
|
261 |
|
262 |
# def load_leaderboard():
|
263 |
# """
|
264 |
-
# Load
|
265 |
# """
|
266 |
-
# if not os.path.exists(LEADERBOARD_FILE):
|
267 |
# return pd.DataFrame({
|
268 |
# "Model Name": [],
|
269 |
# "Overall Accuracy": [],
|
@@ -274,10 +70,9 @@
|
|
274 |
# })
|
275 |
# return pd.read_csv(LEADERBOARD_FILE)
|
276 |
|
277 |
-
|
278 |
-
# def evaluate_predictions_and_update_leaderboard(prediction_file):
|
279 |
# """
|
280 |
-
# Evaluate predictions and
|
281 |
# """
|
282 |
# ground_truth_file = "ground_truth.csv"
|
283 |
# if not os.path.exists(ground_truth_file):
|
@@ -286,35 +81,45 @@
|
|
286 |
# return "Prediction file not uploaded.", load_leaderboard()
|
287 |
|
288 |
# try:
|
|
|
289 |
# predictions_df = pd.read_csv(prediction_file.name)
|
290 |
# ground_truth_df = pd.read_csv(ground_truth_file)
|
291 |
-
# model_name = os.path.basename(prediction_file.name).split('_')[1].split('.')[0]
|
292 |
|
|
|
293 |
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
294 |
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
295 |
|
|
|
296 |
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
297 |
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
298 |
# total_predictions = len(merged_df)
|
299 |
# total_valid_predictions = len(valid_predictions)
|
300 |
|
|
|
301 |
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
302 |
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
303 |
|
304 |
# results = {
|
305 |
-
# 'model_name': model_name,
|
306 |
# 'overall_accuracy': overall_accuracy,
|
307 |
# 'valid_accuracy': valid_accuracy,
|
308 |
# 'correct_predictions': correct_predictions,
|
309 |
# 'total_questions': total_predictions,
|
310 |
# }
|
311 |
|
312 |
-
#
|
313 |
-
#
|
|
|
|
|
|
|
|
|
314 |
# except Exception as e:
|
315 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
316 |
|
317 |
-
# #
|
|
|
|
|
|
|
318 |
# with gr.Blocks() as demo:
|
319 |
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
320 |
|
@@ -322,6 +127,8 @@
|
|
322 |
# # Submission Tab
|
323 |
# with gr.TabItem("🏅 Submission"):
|
324 |
# file_input = gr.File(label="Upload Prediction CSV")
|
|
|
|
|
325 |
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
326 |
# leaderboard_table_preview = gr.Dataframe(
|
327 |
# value=load_leaderboard(),
|
@@ -331,8 +138,8 @@
|
|
331 |
# )
|
332 |
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
333 |
# eval_button.click(
|
334 |
-
#
|
335 |
-
# inputs=[file_input],
|
336 |
# outputs=[eval_status, leaderboard_table_preview],
|
337 |
# )
|
338 |
|
@@ -354,49 +161,76 @@
|
|
354 |
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
355 |
|
356 |
# demo.launch()
|
|
|
357 |
import gradio as gr
|
358 |
import pandas as pd
|
359 |
-
import os
|
360 |
import re
|
361 |
from datetime import datetime
|
|
|
|
|
|
|
362 |
|
363 |
-
|
|
|
|
|
364 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
365 |
|
366 |
-
def
|
367 |
"""
|
368 |
-
|
369 |
"""
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
"
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
381 |
-
"Correct Predictions", "Total Questions", "Timestamp"
|
382 |
-
]).to_csv(LEADERBOARD_FILE, index=False)
|
383 |
|
384 |
-
def
|
385 |
"""
|
386 |
-
|
387 |
"""
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
395 |
|
396 |
def update_leaderboard(results):
|
397 |
"""
|
398 |
-
Append new submission results to the leaderboard
|
399 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
new_entry = {
|
401 |
"Model Name": results['model_name'],
|
402 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
@@ -405,41 +239,38 @@ def update_leaderboard(results):
|
|
405 |
"Total Questions": results['total_questions'],
|
406 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
407 |
}
|
|
|
408 |
|
409 |
-
|
410 |
-
|
|
|
|
|
411 |
|
412 |
-
def
|
413 |
"""
|
414 |
-
|
415 |
"""
|
416 |
-
if
|
417 |
-
return
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
"Timestamp": [],
|
424 |
-
})
|
425 |
-
return pd.read_csv(LEADERBOARD_FILE)
|
426 |
|
427 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
428 |
"""
|
429 |
Evaluate predictions and optionally add results to the leaderboard.
|
430 |
"""
|
431 |
-
|
432 |
-
if
|
433 |
return "Ground truth file not found.", load_leaderboard()
|
434 |
if not prediction_file:
|
435 |
return "Prediction file not uploaded.", load_leaderboard()
|
436 |
|
437 |
try:
|
438 |
-
# Load predictions and ground truth
|
439 |
predictions_df = pd.read_csv(prediction_file.name)
|
440 |
-
ground_truth_df = pd.read_csv(ground_truth_file)
|
441 |
-
|
442 |
-
# Merge predictions with ground truth
|
443 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
444 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
445 |
|
@@ -470,12 +301,9 @@ def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
470 |
except Exception as e:
|
471 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
472 |
|
473 |
-
# Initialize leaderboard file
|
474 |
-
initialize_leaderboard_file()
|
475 |
-
|
476 |
# Gradio Interface
|
477 |
with gr.Blocks() as demo:
|
478 |
-
gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
479 |
|
480 |
with gr.Tabs():
|
481 |
# Submission Tab
|
@@ -516,4 +344,3 @@ with gr.Blocks() as demo:
|
|
516 |
|
517 |
demo.launch()
|
518 |
|
519 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
# # demo.launch()
|
3 |
# import gradio as gr
|
4 |
# import pandas as pd
|
5 |
# import os
|
6 |
# import re
|
7 |
# from datetime import datetime
|
8 |
|
9 |
+
# LEADERBOARD_FILE = "leaderboard.csv" # File to store all submissions persistently
|
10 |
# LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
11 |
|
12 |
+
# def initialize_leaderboard_file():
|
13 |
+
# """
|
14 |
+
# Ensure the leaderboard file exists and has the correct headers.
|
15 |
+
# """
|
16 |
+
# if not os.path.exists(LEADERBOARD_FILE):
|
17 |
+
# # Create the file with headers
|
18 |
+
# pd.DataFrame(columns=[
|
19 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
20 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
21 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
22 |
+
# else:
|
23 |
+
# # Check if the file is empty and write headers if needed
|
24 |
+
# if os.stat(LEADERBOARD_FILE).st_size == 0:
|
25 |
+
# pd.DataFrame(columns=[
|
26 |
+
# "Model Name", "Overall Accuracy", "Valid Accuracy",
|
27 |
+
# "Correct Predictions", "Total Questions", "Timestamp"
|
28 |
+
# ]).to_csv(LEADERBOARD_FILE, index=False)
|
29 |
+
|
30 |
# def clean_answer(answer):
|
31 |
+
# """
|
32 |
+
# Clean and normalize the predicted answers.
|
33 |
+
# """
|
34 |
# if pd.isna(answer):
|
35 |
# return None
|
36 |
# answer = str(answer)
|
|
|
39 |
# return clean[0].upper()
|
40 |
# return None
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
# def update_leaderboard(results):
|
43 |
# """
|
44 |
+
# Append new submission results to the leaderboard file.
|
45 |
# """
|
46 |
# new_entry = {
|
47 |
# "Model Name": results['model_name'],
|
|
|
52 |
# "Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
53 |
# }
|
54 |
|
|
|
55 |
# new_entry_df = pd.DataFrame([new_entry])
|
56 |
+
# new_entry_df.to_csv(LEADERBOARD_FILE, mode='a', index=False, header=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# def load_leaderboard():
|
59 |
# """
|
60 |
+
# Load all submissions from the leaderboard file.
|
61 |
# """
|
62 |
+
# if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
|
63 |
# return pd.DataFrame({
|
64 |
# "Model Name": [],
|
65 |
# "Overall Accuracy": [],
|
|
|
70 |
# })
|
71 |
# return pd.read_csv(LEADERBOARD_FILE)
|
72 |
|
73 |
+
# def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
|
|
74 |
# """
|
75 |
+
# Evaluate predictions and optionally add results to the leaderboard.
|
76 |
# """
|
77 |
# ground_truth_file = "ground_truth.csv"
|
78 |
# if not os.path.exists(ground_truth_file):
|
|
|
81 |
# return "Prediction file not uploaded.", load_leaderboard()
|
82 |
|
83 |
# try:
|
84 |
+
# # Load predictions and ground truth
|
85 |
# predictions_df = pd.read_csv(prediction_file.name)
|
86 |
# ground_truth_df = pd.read_csv(ground_truth_file)
|
|
|
87 |
|
88 |
+
# # Merge predictions with ground truth
|
89 |
# merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
90 |
# merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
91 |
|
92 |
+
# # Evaluate predictions
|
93 |
# valid_predictions = merged_df.dropna(subset=['pred_answer'])
|
94 |
# correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
|
95 |
# total_predictions = len(merged_df)
|
96 |
# total_valid_predictions = len(valid_predictions)
|
97 |
|
98 |
+
# # Calculate accuracy
|
99 |
# overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
|
100 |
# valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
|
101 |
|
102 |
# results = {
|
103 |
+
# 'model_name': model_name if model_name else "Unknown Model",
|
104 |
# 'overall_accuracy': overall_accuracy,
|
105 |
# 'valid_accuracy': valid_accuracy,
|
106 |
# 'correct_predictions': correct_predictions,
|
107 |
# 'total_questions': total_predictions,
|
108 |
# }
|
109 |
|
110 |
+
# # Update leaderboard only if opted in
|
111 |
+
# if add_to_leaderboard:
|
112 |
+
# update_leaderboard(results)
|
113 |
+
# return "Evaluation completed and added to leaderboard.", load_leaderboard()
|
114 |
+
# else:
|
115 |
+
# return "Evaluation completed but not added to leaderboard.", load_leaderboard()
|
116 |
# except Exception as e:
|
117 |
# return f"Error during evaluation: {str(e)}", load_leaderboard()
|
118 |
|
119 |
+
# # Initialize leaderboard file
|
120 |
+
# initialize_leaderboard_file()
|
121 |
+
|
122 |
+
# # Gradio Interface
|
123 |
# with gr.Blocks() as demo:
|
124 |
# gr.Markdown("# Prediction Evaluation Tool with Leaderboard")
|
125 |
|
|
|
127 |
# # Submission Tab
|
128 |
# with gr.TabItem("🏅 Submission"):
|
129 |
# file_input = gr.File(label="Upload Prediction CSV")
|
130 |
+
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
|
131 |
+
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
|
132 |
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
|
133 |
# leaderboard_table_preview = gr.Dataframe(
|
134 |
# value=load_leaderboard(),
|
|
|
138 |
# )
|
139 |
# eval_button = gr.Button("Evaluate and Update Leaderboard")
|
140 |
# eval_button.click(
|
141 |
+
# evaluate_predictions,
|
142 |
+
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
|
143 |
# outputs=[eval_status, leaderboard_table_preview],
|
144 |
# )
|
145 |
|
|
|
161 |
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
|
162 |
|
163 |
# demo.launch()
|
164 |
+
|
165 |
import gradio as gr
|
166 |
import pandas as pd
|
|
|
167 |
import re
|
168 |
from datetime import datetime
|
169 |
+
from huggingface_hub import hf_hub_download
|
170 |
+
from datasets import Dataset
|
171 |
+
import os
|
172 |
|
173 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # Hugging Face token stored as an environment variable
|
174 |
+
LEADERBOARD_REPO = "username/leaderboard-dataset" # Replace with your leaderboard dataset name
|
175 |
+
GROUND_TRUTH_REPO = "username/ground-truth-dataset" # Replace with your ground truth dataset name
|
176 |
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
|
177 |
|
178 |
+
def load_ground_truth():
|
179 |
"""
|
180 |
+
Load the ground truth file from a private Hugging Face dataset.
|
181 |
"""
|
182 |
+
try:
|
183 |
+
ground_truth_path = hf_hub_download(
|
184 |
+
repo_id=GROUND_TRUTH_REPO,
|
185 |
+
filename="ground_truth.csv",
|
186 |
+
use_auth_token=HF_TOKEN
|
187 |
+
)
|
188 |
+
return pd.read_csv(ground_truth_path)
|
189 |
+
except Exception as e:
|
190 |
+
print(f"Error loading ground truth: {e}")
|
191 |
+
return None
|
|
|
|
|
|
|
192 |
|
193 |
+
def load_leaderboard():
|
194 |
"""
|
195 |
+
Load the leaderboard from a private Hugging Face dataset.
|
196 |
"""
|
197 |
+
try:
|
198 |
+
leaderboard_path = hf_hub_download(
|
199 |
+
repo_id=LEADERBOARD_REPO,
|
200 |
+
filename="leaderboard.csv",
|
201 |
+
use_auth_token=HF_TOKEN
|
202 |
+
)
|
203 |
+
return pd.read_csv(leaderboard_path)
|
204 |
+
except Exception as e:
|
205 |
+
print(f"Error loading leaderboard: {e}")
|
206 |
+
return pd.DataFrame({
|
207 |
+
"Model Name": [],
|
208 |
+
"Overall Accuracy": [],
|
209 |
+
"Valid Accuracy": [],
|
210 |
+
"Correct Predictions": [],
|
211 |
+
"Total Questions": [],
|
212 |
+
"Timestamp": [],
|
213 |
+
})
|
214 |
|
215 |
def update_leaderboard(results):
|
216 |
"""
|
217 |
+
Append new submission results to the private leaderboard dataset.
|
218 |
"""
|
219 |
+
try:
|
220 |
+
# Load existing leaderboard or create a new one
|
221 |
+
leaderboard_path = hf_hub_download(
|
222 |
+
repo_id=LEADERBOARD_REPO,
|
223 |
+
filename="leaderboard.csv",
|
224 |
+
use_auth_token=HF_TOKEN
|
225 |
+
)
|
226 |
+
df = pd.read_csv(leaderboard_path)
|
227 |
+
except:
|
228 |
+
df = pd.DataFrame(columns=[
|
229 |
+
"Model Name", "Overall Accuracy", "Valid Accuracy",
|
230 |
+
"Correct Predictions", "Total Questions", "Timestamp"
|
231 |
+
])
|
232 |
+
|
233 |
+
# Add new entry
|
234 |
new_entry = {
|
235 |
"Model Name": results['model_name'],
|
236 |
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
|
|
|
239 |
"Total Questions": results['total_questions'],
|
240 |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
241 |
}
|
242 |
+
df = pd.concat([df, pd.DataFrame([new_entry])], ignore_index=True)
|
243 |
|
244 |
+
# Save locally and push updated dataset to Hugging Face
|
245 |
+
df.to_csv("leaderboard.csv", index=False)
|
246 |
+
dataset = Dataset.from_pandas(df)
|
247 |
+
dataset.push_to_hub(LEADERBOARD_REPO, split="train", private=True)
|
248 |
|
249 |
+
def clean_answer(answer):
|
250 |
"""
|
251 |
+
Clean and normalize the predicted answers.
|
252 |
"""
|
253 |
+
if pd.isna(answer):
|
254 |
+
return None
|
255 |
+
answer = str(answer)
|
256 |
+
clean = re.sub(r'[^A-Da-d]', '', answer)
|
257 |
+
if clean:
|
258 |
+
return clean[0].upper()
|
259 |
+
return None
|
|
|
|
|
|
|
260 |
|
261 |
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
|
262 |
"""
|
263 |
Evaluate predictions and optionally add results to the leaderboard.
|
264 |
"""
|
265 |
+
ground_truth_df = load_ground_truth()
|
266 |
+
if ground_truth_df is None:
|
267 |
return "Ground truth file not found.", load_leaderboard()
|
268 |
if not prediction_file:
|
269 |
return "Prediction file not uploaded.", load_leaderboard()
|
270 |
|
271 |
try:
|
272 |
+
# Load predictions and merge with ground truth
|
273 |
predictions_df = pd.read_csv(prediction_file.name)
|
|
|
|
|
|
|
274 |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
|
275 |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
|
276 |
|
|
|
301 |
except Exception as e:
|
302 |
return f"Error during evaluation: {str(e)}", load_leaderboard()
|
303 |
|
|
|
|
|
|
|
304 |
# Gradio Interface
|
305 |
with gr.Blocks() as demo:
|
306 |
+
gr.Markdown("# Secure Prediction Evaluation Tool with Private Leaderboard")
|
307 |
|
308 |
with gr.Tabs():
|
309 |
# Submission Tab
|
|
|
344 |
|
345 |
demo.launch()
|
346 |
|
|