SondosMB's picture
Update app.py
d55e531 verified
raw
history blame
13.8 kB
import gradio as gr
import pandas as pd
import os
import re
from datetime import datetime
from huggingface_hub import hf_hub_download
from huggingface_hub import HfApi, HfFolder
LEADERBOARD_FILE = "leaderboard.csv"
GROUND_TRUTH_FILE = "ground_truth.csv"
LAST_UPDATED = datetime.now().strftime("%B %d, %Y")
# Ensure authentication and suppress warnings
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("HF_TOKEN environment variable is not set or invalid.")
def initialize_leaderboard_file():
"""
Ensure the leaderboard file exists and has the correct headers.
"""
if not os.path.exists(LEADERBOARD_FILE):
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
elif os.stat(LEADERBOARD_FILE).st_size == 0:
pd.DataFrame(columns=[
"Model Name", "Overall Accuracy", "Valid Accuracy",
"Correct Predictions", "Total Questions", "Timestamp"
]).to_csv(LEADERBOARD_FILE, index=False)
def clean_answer(answer):
if pd.isna(answer):
return None
answer = str(answer)
clean = re.sub(r'[^A-Da-d]', '', answer)
return clean[0].upper() if clean else None
def update_leaderboard(results):
"""
Append new submission results to the leaderboard file and push updates to the Hugging Face repository.
"""
new_entry = {
"Model Name": results['model_name'],
"Overall Accuracy": round(results['overall_accuracy'] * 100, 2),
"Valid Accuracy": round(results['valid_accuracy'] * 100, 2),
"Correct Predictions": results['correct_predictions'],
"Total Questions": results['total_questions'],
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
try:
# Update the local leaderboard file
new_entry_df = pd.DataFrame([new_entry])
file_exists = os.path.exists(LEADERBOARD_FILE)
new_entry_df.to_csv(
LEADERBOARD_FILE,
mode='a', # Append mode
index=False,
header=not file_exists # Write header only if the file is new
)
print(f"Leaderboard updated successfully at {LEADERBOARD_FILE}")
# Push the updated file to the Hugging Face repository using HTTP API
api = HfApi()
token = HfFolder.get_token()
api.upload_file(
path_or_fileobj=LEADERBOARD_FILE,
path_in_repo="leaderboard.csv",
repo_id="SondosMB/ss", # Your Space repository
repo_type="space",
token=token
)
print("Leaderboard changes pushed to Hugging Face repository.")
except Exception as e:
print(f"Error updating leaderboard file: {e}")
def load_leaderboard():
if not os.path.exists(LEADERBOARD_FILE) or os.stat(LEADERBOARD_FILE).st_size == 0:
return pd.DataFrame({
"Model Name": [],
"Overall Accuracy": [],
"Valid Accuracy": [],
"Correct Predictions": [],
"Total Questions": [],
"Timestamp": [],
})
return pd.read_csv(LEADERBOARD_FILE)
def evaluate_predictions(prediction_file, model_name, add_to_leaderboard):
try:
ground_truth_path = hf_hub_download(
repo_id="SondosMB/ground-truth-dataset",
filename="ground_truth.csv",
repo_type="dataset",
use_auth_token=True
)
ground_truth_df = pd.read_csv(ground_truth_path)
except FileNotFoundError:
return "Ground truth file not found in the dataset repository.", load_leaderboard()
except Exception as e:
return f"Error loading ground truth: {e}", load_leaderboard()
if not prediction_file:
return "Prediction file not uploaded.", load_leaderboard()
try:
predictions_df = pd.read_csv(prediction_file.name)
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner')
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer)
valid_predictions = merged_df.dropna(subset=['pred_answer'])
correct_predictions = (valid_predictions['pred_answer'] == valid_predictions['Answer']).sum()
total_predictions = len(merged_df)
total_valid_predictions = len(valid_predictions)
overall_accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0
valid_accuracy = correct_predictions / total_valid_predictions if total_valid_predictions > 0 else 0
results = {
'model_name': model_name if model_name else "Unknown Model",
'overall_accuracy': overall_accuracy,
'valid_accuracy': valid_accuracy,
'correct_predictions': correct_predictions,
'total_questions': total_predictions,
}
if add_to_leaderboard:
update_leaderboard(results)
return "Evaluation completed and added to leaderboard.", load_leaderboard()
else:
return "Evaluation completed but not added to leaderboard.", load_leaderboard()
except Exception as e:
return f"Error during evaluation: {str(e)}", load_leaderboard()
initialize_leaderboard_file()
# Function to set default mode
# Function to set default mode
import gradio as gr
# # Ensure CSS is correctly defined
# css_tech_theme = """
# body {
# background-color: #f4f6fa;
# color: #333333;
# font-family: 'Roboto', sans-serif;
# line-height: 1.8;
# }
# .center-content {
# display: flex;
# flex-direction: column;
# align-items: center;
# justify-content: center;
# text-align: center;
# margin: 30px 0;
# padding: 20px;
# }
# h1, h2 {
# color: #5e35b1;
# margin: 15px 0;
# text-align: center;
# }
# img {
# width: 100px;
# height: 100px;
# }
# """
# # Create the Gradio Interface
# with gr.Blocks(css=css_tech_theme) as demo:
# gr.Markdown("""
# <div class="center-content">
# <h1>πŸ† Mobile-MMLU Benchmark Competition</h1>
# <h2>🌟 Welcome to the Competition</h2>
# <p>
# Welcome to the Mobile-MMLU Benchmark Competition. Here you can submit your predictions,
# view the leaderboard, and track your performance!
# </p>
# <hr>
# </div>
# """)
# with gr.Tabs(elem_id="tabs"):
# with gr.TabItem("πŸ“– Overview"):
# gr.Markdown("""
# **Welcome to the Mobile-MMLU Benchmark Competition! Evaluate mobile-compatible Large Language Models (LLMs) on 16,186 scenario-based and factual questions across 80 fields**.
# ---
# ## What is Mobile-MMLU?
# Mobile-MMLU is a benchmark designed to test the capabilities of LLMs optimized for mobile use. Contribute to advancing mobile AI systems by competing to achieve the highest accuracy.
# ---
# ## How It Works
# 1. **Download the Dataset**
# Access the dataset and instructions on our [GitHub page](https://github.com/your-github-repo).
# 2. **Generate Predictions**
# Use your LLM to answer the dataset questions. Format your predictions as a CSV file.
# 3. **Submit Predictions**
# Upload your predictions on this platform.
# 4. **Evaluation**
# Submissions are scored on accuracy.
# 5. **Leaderboard**
# View real-time rankings on the leaderboard.
# ---
# """)
# with gr.TabItem("πŸ“€ Submission"):
# with gr.Row():
# file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
# model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
# with gr.Row():
# overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
# add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
# eval_button = gr.Button("Evaluate")
# eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
# def handle_evaluation(file, model_name, add_to_leaderboard):
# status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
# if leaderboard.empty:
# overall_accuracy = 0
# else:
# overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"]
# return status, overall_accuracy
# eval_button.click(
# handle_evaluation,
# inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
# outputs=[eval_status, overall_accuracy_display],
# )
# with gr.TabItem("πŸ… Leaderboard"):
# leaderboard_table = gr.Dataframe(
# value=load_leaderboard(),
# label="Leaderboard",
# interactive=False,
# wrap=True,
# )
# refresh_button = gr.Button("Refresh Leaderboard")
# refresh_button.click(
# lambda: load_leaderboard(),
# inputs=[],
# outputs=[leaderboard_table],
# )
# gr.Markdown(f"Last updated on **{LAST_UPDATED}**")
# demo.launch()
import gradio as gr
# Custom CSS to match website style
# Define CSS to match a modern, professional design
css_tech_theme = """
body {
font-family: 'Roboto', sans-serif;
background-color: #f4f6fa;
color: #333333;
line-height: 1.8;
margin: 0;
padding: 0;
}
.center-content {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
text-align: center;
margin: 40px auto;
padding: 20px;
background: linear-gradient(135deg, #6a1b9a, #64b5f6);
color: #ffffff;
border-radius: 10px;
max-width: 80%;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.2);
}
.center-content h1 {
font-size: 3em;
font-weight: bold;
margin-bottom: 10px;
}
.center-content h2 {
font-size: 1.8em;
margin: 10px 0 20px;
font-weight: 500;
}
.center-content p {
font-size: 1.2em;
margin-bottom: 20px;
line-height: 1.6;
}
.tabs {
margin-top: 20px;
}
.gradio-container {
background: #ffffff;
border-radius: 10px;
box-shadow: 0 4px 15px rgba(0, 0, 0, 0.1);
padding: 20px;
max-width: 1200px;
margin: 0 auto;
}
#leaderboard {
margin: 20px auto;
border-radius: 10px;
overflow: hidden;
border: 1px solid #e5eff2;
background: #f9f9f9;
}
footer {
text-align: center;
padding: 20px;
background: #6a1b9a;
color: #ffffff;
margin-top: 20px;
font-size: 0.9em;
border-top: 5px solid #64b5f6;
}
"""
# Create the Gradio Interface
with gr.Blocks(css=css_tech_theme) as demo:
gr.Markdown("""
<div class="center-content">
<h1>πŸ† Mobile-MMLU Benchmark Competition</h1>
<h2>🌟 Welcome to the Competition</h2>
<p>
Welcome to the Mobile-MMLU Benchmark Competition. Submit your predictions,
view the leaderboard, and track your performance!
</p>
<hr>
</div>
""")
with gr.Tabs(elem_id="tabs"):
with gr.TabItem("πŸ“– Overview"):
gr.Markdown("""
<div class="tab-content active">
<h2>About the Competition</h2>
<p>
**Mobile-MMLU** evaluates mobile-optimized LLMs on 16,186 scenario-based and factual questions across 80 fields.
<br><br> Test your model, submit predictions, and climb the leaderboard!
</p>
</div>
""")
with gr.TabItem("πŸ“€ Submission"):
with gr.Row():
file_input = gr.File(label="Upload Prediction CSV", file_types=[".csv"], interactive=True)
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter your model name")
with gr.Row():
overall_accuracy_display = gr.Number(label="Overall Accuracy", interactive=False)
add_to_leaderboard_checkbox = gr.Checkbox(label="Add to Leaderboard?", value=True)
eval_button = gr.Button("Evaluate")
eval_status = gr.Textbox(label="Evaluation Status", interactive=False)
def handle_evaluation(file, model_name, add_to_leaderboard):
status, leaderboard = evaluate_predictions(file, model_name, add_to_leaderboard)
overall_accuracy = leaderboard.iloc[-1]["Overall Accuracy"] if not leaderboard.empty else 0
return status, overall_accuracy
eval_button.click(
handle_evaluation,
inputs=[file_input, model_name_input, add_to_leaderboard_checkbox],
outputs=[eval_status, overall_accuracy_display],
)
with gr.TabItem("πŸ… Leaderboard"):
leaderboard_table = gr.Dataframe(
value=load_leaderboard(),
label="Leaderboard",
interactive=False,
wrap=True,
)
refresh_button = gr.Button("Refresh Leaderboard")
refresh_button.click(
lambda: load_leaderboard(),
inputs=[],
outputs=[leaderboard_table],
)
gr.Markdown("<footer>Mobile-MMLU Competition | Last Updated: December 2024</footer>")
demo.launch()