Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import os | |
import re | |
from datetime import datetime | |
# Leaderboard Data (example CSV file for leaderboard) | |
LEADERBOARD_FILE = "leaderboard.csv" | |
def clean_answer(answer): | |
if pd.isna(answer): | |
return None | |
answer = str(answer) | |
clean = re.sub(r'[^A-Da-d]', '', answer) | |
if clean: | |
first_letter = clean[0].upper() | |
if first_letter in ['A', 'B', 'C', 'D']: | |
return first_letter | |
return None | |
def update_leaderboard(results): | |
# Append results to leaderboard file | |
new_entry = { | |
"Model Name": results['model_name'], | |
"Overall Accuracy": f"{results['overall_accuracy']:.2%}", | |
"Valid Accuracy": f"{results['valid_accuracy']:.2%}", | |
"Correct Predictions": results['correct_predictions'], | |
"Total Questions": results['total_questions'], | |
"Timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
} | |
leaderboard_df = pd.DataFrame([new_entry]) | |
if os.path.exists(LEADERBOARD_FILE): | |
existing_df = pd.read_csv(LEADERBOARD_FILE) | |
leaderboard_df = pd.concat([existing_df, leaderboard_df], ignore_index=True) | |
leaderboard_df.to_csv(LEADERBOARD_FILE, index=False) | |
def evaluate_predictions(prediction_file): | |
ground_truth_file = "ground_truth.csv" # Specify the path to the ground truth file | |
if not prediction_file: | |
return "Prediction file not uploaded", None | |
if not os.path.exists(ground_truth_file): | |
return "Ground truth file not found", None | |
try: | |
predictions_df = pd.read_csv(prediction_file.name) | |
ground_truth_df = pd.read_csv(ground_truth_file) | |
filename = os.path.basename(prediction_file.name) | |
model_name = filename.split('_')[1].split('.')[0] if "_" in filename else "unknown_model" | |
merged_df = pd.merge(predictions_df, ground_truth_df, on='question_id', how='inner') | |
merged_df['pred_answer'] = merged_df['predicted_answer'].apply(clean_answer) | |
correct_predictions = (merged_df['pred_answer'] == merged_df['Answer']).sum() | |
total_predictions = len(merged_df) | |
overall_accuracy = correct_predictions / total_predictions | |
results = { | |
'model_name': model_name, | |
'overall_accuracy': overall_accuracy, | |
'correct_predictions': correct_predictions, | |
'total_questions': total_predictions, | |
} | |
update_leaderboard(results) | |
return "Evaluation completed successfully! Leaderboard updated.", LEADERBOARD_FILE | |
except Exception as e: | |
return f"Error: {str(e)}", None | |
# Gradio Interface with Leaderboard | |
def display_leaderboard(): | |
if not os.path.exists(LEADERBOARD_FILE): | |
return "Leaderboard is empty." | |
leaderboard_df = pd.read_csv(LEADERBOARD_FILE) | |
return leaderboard_df.to_markdown(index=False) | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("# Prediction Evaluation Tool with Leaderboard") | |
with gr.Tab("Evaluate"): | |
file_input = gr.File(label="Upload Prediction CSV") | |
eval_status = gr.Textbox(label="Evaluation Status") | |
eval_results_file = gr.File(label="Download Evaluation Results") | |
eval_button = gr.Button("Evaluate") | |
eval_button.click( | |
evaluate_predictions, inputs=file_input, outputs=[eval_status, eval_results_file] | |
) | |
with gr.Tab("Leaderboard"): | |
leaderboard_text = gr.Textbox(label="Leaderboard", interactive=False) | |
refresh_button = gr.Button("Refresh Leaderboard") | |
refresh_button.click(display_leaderboard, outputs=leaderboard_text) | |
if __name__ == "__main__": | |
demo.launch() | |