Spaces:
Running
Running
import streamlit as st | |
import numpy as np | |
import random | |
import pandas as pd | |
import glob | |
import csv | |
from PIL import Image | |
import datasets | |
from datasets import load_dataset, Dataset, load_from_disk | |
from huggingface_hub import login | |
import os | |
import requests | |
SCORE_NAME_MAPPING = {'clip': 'clip_score', 'rank': 'avg_rank', 'pop': 'model_download_count'} | |
class GalleryApp: | |
def __init__(self, promptBook): | |
self.promptBook = promptBook | |
st.set_page_config(layout="wide") | |
def gallery_masonry(self, items, col_num, info): | |
cols = st.columns(col_num) | |
# # sort items by brisque score | |
# items = items.sort_values(by=['brisque'], ascending=True).reset_index(drop=True) | |
for idx in range(len(items)): | |
with cols[idx % col_num]: | |
image = st.session_state.images[items.iloc[idx]['row_idx'].item()]['image'] | |
st.image(image, | |
use_column_width=True, | |
) | |
# with st.expander('Similarity Info'): | |
# tab1, tab2 = st.tabs(['Most Similar', 'Least Similar']) | |
# with tab1: | |
# st.image(image, use_column_width=True) | |
# with tab2: | |
# st.image(image, use_column_width=True) | |
# show checkbox | |
self.promptBook.loc[items.iloc[idx]['row_idx'].item(), 'checked'] = st.checkbox( | |
'Select', value=self.promptBook.loc[items.iloc[idx]['row_idx'].item(), 'checked'], | |
key=f'select_{idx}') | |
for key in info: | |
st.write(f"**{key}**: {items.iloc[idx][key]}") | |
def gallery_standard(self, items, col_num, info): | |
rows = len(items) // col_num + 1 | |
containers = [st.container() for _ in range(rows*2)] | |
for idx in range(0, len(items), col_num): | |
# assign one container for each row | |
row_idx = (idx // col_num) * 2 | |
with containers[row_idx]: | |
cols = st.columns(col_num) | |
for j in range(col_num): | |
if idx + j < len(items): | |
with cols[j]: | |
# show image | |
image = st.session_state.images[items.iloc[idx+j]['row_idx'].item()]['image'] | |
# image = list(st.session_state.images.skip(items.iloc[idx+j]['row_idx'].item()).take(1))[0]['image'] | |
st.image(image, | |
use_column_width=True, | |
) | |
# show checkbox | |
self.promptBook.loc[items.iloc[idx+j]['row_idx'].item(), 'checked'] = st.checkbox('Select', value=self.promptBook.loc[items.iloc[idx+j]['row_idx'].item(), 'checked'], key=f'select_{idx+j}') | |
# show selected info | |
for key in info: | |
st.write(f"**{key}**: {items.iloc[idx+j][key]}") | |
# st.write(row_idx/2, idx+j, rows) | |
# extra_info = st.checkbox('Extra Info', key=f'extra_info_{idx+j}') | |
# if extra_info: | |
# with containers[row_idx+1]: | |
# st.image(image, use_column_width=True) | |
def app(self): | |
st.title('Model Coffer Gallery') | |
st.write('This is a gallery of images generated by the models in the Model Coffer') | |
with st.sidebar: | |
prompt_tags = self.promptBook['tag'].unique() | |
# sort tags by alphabetical order | |
prompt_tags = np.sort(prompt_tags)[::-1] | |
tag = st.selectbox('Select a tag', prompt_tags) | |
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True) | |
original_prompts = np.sort(items['prompt'].unique())[::-1] | |
# remove the first four items in the prompt, which are mostly the same | |
if tag != 'abstract': | |
prompts = [', '.join(x.split(', ')[4:]) for x in original_prompts] | |
prompt = st.selectbox('Select prompt', prompts) | |
idx = prompts.index(prompt) | |
prompt_full = ', '.join(original_prompts[idx].split(', ')[:4]) + ', ' + prompt | |
else: | |
prompt_full = st.selectbox('Select prompt', original_prompts) | |
prompt_id = items[items['prompt'] == prompt_full]['prompt_id'].unique()[0] | |
items = items[items['prompt_id'] == prompt_id].reset_index(drop=True) | |
st.write('**Prompt ID**') | |
st.caption(f"{prompt_id}") | |
st.write('**Prompt**') | |
st.caption(f"{items['prompt'][0]}") | |
st.write('**Negative Prompt**') | |
st.caption(f"{items['negativePrompt'][0]}") | |
st.write('**Sampler**') | |
st.caption(f"{items['sampler'][0]}") | |
st.write('**cfgScale**') | |
st.caption(f"{items['cfgScale'][0]}") | |
st.write('**Size**') | |
st.caption(f"width: {items['size'][0].split('x')[0]}, height: {items['size'][0].split('x')[1]}") | |
st.write('**Seed**') | |
st.caption(f"{items['seed'][0]}") | |
# # for tag as civitai, add civitai reference | |
# if tag == 'civitai': | |
# st.write('**Reference**') | |
# | |
# res = requests.get(f'https://civitai.com/images', params={'post_id': prompt_id}) | |
# st.write(res) | |
# image_url = res.json()['items'][0]['url'] | |
# st.image(image_url, use_column_width=True) | |
# with images: | |
# selecters = st.columns([2, 1, 2, 0.5]) | |
selecters = st.columns([4, 1, 1]) | |
with selecters[0]: | |
# # sort_by = st.selectbox('Sort by', items.columns[11: -1]) | |
# sort_by = st.selectbox('Sort by', ['model_download_count', 'clip_score', 'avg_rank', 'model_name', 'model_id', | |
# 'modelVersion_name', 'modelVersion_id']) | |
print(items.columns) | |
types = st.columns([1, 3]) | |
with types[0]: | |
sort_type = st.selectbox('Sort by', ['IDs and Names', 'Scores']) | |
with types[1]: | |
if sort_type == 'IDs and Names': | |
sort_by = st.selectbox('Sort by', ['model_name', 'model_id', 'modelVersion_name', 'modelVersion_id'], label_visibility='hidden') | |
elif sort_type == 'Scores': | |
sort_by = st.multiselect('Sort by', ['clip_score', 'avg_rank', 'popularity'], label_visibility='hidden', default=['clip_score', 'avg_rank', 'popularity']) | |
# process sort_by to map to the column name | |
if len(sort_by) == 3: | |
sort_by = 'clip+rank+pop' | |
elif len(sort_by) == 2: | |
if 'clip_score' in sort_by and 'avg_rank' in sort_by: | |
sort_by = 'clip+rank' | |
elif 'clip_score' in sort_by and 'popularity' in sort_by: | |
sort_by = 'clip+pop' | |
elif 'avg_rank' in sort_by and 'popularity' in sort_by: | |
sort_by = 'rank+pop' | |
elif len(sort_by) == 1: | |
if 'popularity' in sort_by: | |
sort_by = 'model_download_count' | |
else: | |
sort_by = sort_by[0] | |
print(sort_by) | |
with selecters[1]: | |
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_type == 'Scores' else 0) | |
if order == 'Ascending': | |
order = True | |
else: | |
order = False | |
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True) | |
with selecters[2]: | |
filter = st.selectbox('Filter', ['All', 'Checked', 'Unchecked']) | |
if filter == 'Checked': | |
items = items[items['checked'] is True].reset_index(drop=True) | |
elif filter == 'Unchecked': | |
items = items[items['checked'] is False].reset_index(drop=True) | |
info = st.multiselect('Show Info', | |
['model_download_count', 'clip_score', 'avg_rank', 'model_name', 'model_id', | |
'modelVersion_name', 'modelVersion_id', 'clip+rank', 'clip+pop', 'rank+pop', 'clip+rank+pop'], | |
default=sort_by) | |
print('info', info) | |
# add one annotation | |
mentioned_scores = [] | |
for i in info: | |
if '+' in i: | |
mentioned = i.split('+') | |
for m in mentioned: | |
if SCORE_NAME_MAPPING[m] not in mentioned_scores: | |
mentioned_scores.append(SCORE_NAME_MAPPING[m]) | |
if len(mentioned_scores) > 0: | |
st.write(f"**Note: ** The scores {mentioned_scores} are normalized to [0, 1] for each score type, and then added together. The higher the score, the better the model.") | |
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num') | |
with st.form(key=f'{prompt_id}', clear_on_submit=False): | |
buttons = st.columns([1, 1, 1]) | |
with buttons[0]: | |
submit = st.form_submit_button('Save selections', on_click=self.save_checked, use_container_width=True, type='primary') | |
with buttons[1]: | |
submit = st.form_submit_button('Reset current prompt', on_click=self.reset_current_prompt, kwargs={'prompt_id': prompt_id} , use_container_width=True) | |
with buttons[2]: | |
submit = st.form_submit_button('Reset all selections', on_click=self.reset_all, use_container_width=True) | |
self.gallery_standard(items, col_num, info) | |
def reset_current_prompt(self, prompt_id): | |
# reset current prompt | |
self.promptBook.loc[self.promptBook['prompt_id'] == prompt_id, 'checked'] = False | |
self.save_checked() | |
def reset_all(self): | |
# reset all | |
self.promptBook.loc[:, 'checked'] = False | |
self.save_checked() | |
def save_checked(self): | |
# save checked images to huggingface dataset | |
dataset = load_dataset('NYUSHPRP/ModelCofferMetadata', split='train') | |
# get checked images | |
checked_info = self.promptBook['checked'] | |
# print('checked_info: ', checked_info) | |
# for d in checked_info: | |
# if d is True: | |
# print('checked') | |
if 'checked' in dataset.column_names: | |
dataset = dataset.remove_columns('checked') | |
dataset = dataset.add_column('checked', checked_info) | |
# print('metadata dataset: ', dataset) | |
dataset.push_to_hub('NYUSHPRP/ModelCofferMetadata', split='train') | |
if __name__ == '__main__': | |
login(token=os.environ.get("HF_TOKEN")) | |
if 'roster' not in st.session_state: | |
print('loading roster') | |
# st.session_state.roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train')) | |
st.session_state.roster = pd.DataFrame(load_from_disk(os.path.join(os.getcwd(), 'data', 'roster'))) | |
st.session_state.roster = st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', | |
'model_download_count']].drop_duplicates().reset_index(drop=True) | |
# add model download count from roster to promptbook dataframe | |
if 'promptBook' not in st.session_state: | |
print('loading promptBook') | |
st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train')) | |
# add 'checked' column to promptBook if not exist | |
if 'checked' not in st.session_state.promptBook.columns: | |
st.session_state.promptBook.loc[:, 'checked'] = False | |
st.session_state.images = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook')) | |
# st.session_state.images = load_dataset('NYUSHPRP/ModelCofferPromptBook', split='train', streaming=True) | |
print(st.session_state.images) | |
print('images loaded') | |
# st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferPromptBook', split='train')) | |
st.session_state.promptBook = st.session_state.promptBook.merge(st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], on=['model_id', 'modelVersion_id'], how='left') | |
# add column to record current row index | |
st.session_state.promptBook['row_idx'] = st.session_state.promptBook.index | |
print('promptBook loaded') | |
# print(st.session_state.promptBook) | |
check_roster_error = False | |
if check_roster_error: | |
# print all rows with the same model_id and modelVersion_id but different model_download_count in roster | |
print(st.session_state.roster[st.session_state.roster.duplicated(subset=['model_id', 'modelVersion_id'], keep=False)].sort_values(by=['model_id', 'modelVersion_id'])) | |
app = GalleryApp(promptBook=st.session_state.promptBook) | |
app.app() | |