File size: 11,872 Bytes
3115330
60aa916
 
 
 
 
 
 
 
e0e6d97
60aa916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2856f
 
 
 
 
 
 
 
 
 
60aa916
d46131f
 
 
 
 
3115330
60aa916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386b40
 
 
 
df61998
 
2386b40
 
 
 
 
60aa916
df61998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2856f
df61998
 
 
 
 
 
 
 
 
4d2856f
 
 
 
 
 
 
 
 
3115330
d46131f
3115330
 
 
 
 
 
 
 
 
4d2856f
 
 
3115330
4d2856f
 
 
 
 
 
2d413f9
60aa916
 
 
bfca1a2
 
 
60aa916
 
 
 
 
 
 
d504e45
 
 
60aa916
 
 
 
 
 
 
 
 
4d2856f
60aa916
0532088
 
60aa916
0532088
60aa916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0e6d97
 
 
 
 
 
 
 
 
 
 
2d413f9
60aa916
 
 
 
 
 
 
 
 
 
2d9947c
 
 
 
 
 
60aa916
 
 
 
 
 
 
 
 
2d9947c
60aa916
 
2d9947c
60aa916
 
 
 
4d2856f
60aa916
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import json
import os

import datasets
import numpy as np
import pandas as pd
import pymysql.cursors
import streamlit as st

from datetime import datetime
from streamlit_elements import elements, mui, html, dashboard, nivo
from streamlit_extras.switch_page_button import switch_page
from streamlit_extras.metric_cards import style_metric_cards
from streamlit_extras.stylable_container import stylable_container

from pages.Gallery import load_hf_dataset
from pages.Ranking import connect_to_db


class DashboardApp:
    def __init__(self, roster, promptBook, session_finished):
        self.roster = roster
        self.promptBook = promptBook
        self.session_finished = session_finished

    def sidebar(self, tags, mode):
        with st.sidebar:
            tag = st.selectbox('Select a tag', tags, key='tag')
            # st.write('---')
            with st.form('summary_sidebar_form'):
                st.write('## Want a more comprehensive summary?')
                st.write('Jump back to gallery and select more images to rank!')
                back_to_gallery = st.form_submit_button('๐Ÿ–ผ๏ธ Go to Gallery')
                if back_to_gallery:
                    switch_page('gallery')
                back_to_ranking = st.form_submit_button('๐ŸŽ–๏ธ Go to Ranking')
                if back_to_ranking:
                    switch_page('ranking')

            # with st.form('overall_feedback'):
            #     feedback = st.text_area('Please leave your comments here.', key='comment')
            #     submit_feedback = st.form_submit_button('Submit Feedback')
            #     if submit_feedback:
            #         print(feedback)

        return tag

    def leaderboard(self, tag, db_table):
        tag = '%' if tag == 'all' else tag

        # get the ranking results of the current user
        curser = RANKING_CONN.cursor()
        curser.execute(f"SELECT * FROM {db_table} WHERE username = '{st.session_state.user_id[0]}' AND timestamp = '{st.session_state.user_id[1]}' AND tag LIKE '{tag}'")
        results = curser.fetchall()
        curser.close()

        modelVersion_standings = self.score_calculator(results, db_table)

        # sort the modelVersion_standings by value into a list of tuples in descending order
        modelVersion_standings = sorted(modelVersion_standings.items(), key=lambda x: x[1], reverse=True)

        tab1, tab2 = st.tabs(['Top Picks', 'Detailed Info'])

        with tab1:
            # self.podium(modelVersion_standings)
            self.podium_expander(modelVersion_standings)

        with tab2:
            st.write('## Detailed information of all selected models')
            detailed_info = pd.merge(pd.DataFrame(modelVersion_standings, columns=['modelVersion_id', 'ranking_score']), self.roster, on='modelVersion_id')
            st.data_editor(detailed_info, hide_index=True, disabled=True)

    def podium(self, modelVersion_standings, n=3):
        st.write('## Top picks')
        metric_cols = st.columns(n)
        image_display = st.empty()

        for i in range(n):
            with metric_cols[i]:
                modelVersion_id = modelVersion_standings[i][0]
                winning_times = modelVersion_standings[i][1]

                model_id, model_name, modelVersion_name, url = self.roster[self.roster['modelVersion_id'] == modelVersion_id][['model_id', 'model_name', 'modelVersion_name', 'modelVersion_url']].values[0]

                metric_card = stylable_container(
                    key="container_with_border",
                    css_styles="""
                    {
                        border: 1.5px solid rgba(49, 51, 63, 0.2);
                        border-left: 0.5rem solid gold;
                        border-radius: 5px;
                        padding: calc(1em + 5px);
                        gap: 0.5em;
                        box-shadow: 0 0 2rem rgba(0, 0, 0, 0.08);
                        overflow-x: scroll;
                    }
                    """,
                )

                with metric_card:
                    icon = '๐Ÿฅ‡'if i == 0 else '๐Ÿฅˆ' if i == 1 else '๐Ÿฅ‰'
                    # st.write(model_id)
                    st.write(f'### {icon} {model_name}, [{modelVersion_name}](https://civitai.com/models/{model_id}?modelVersionId={modelVersion_id})')
                    st.write(f'Ranking Score: {winning_times}')

                show_image = st.button('Show Image', key=modelVersion_id, use_container_width=True)
                if show_image:

                    images = self.promptBook[self.promptBook['modelVersion_id'] == modelVersion_id]['image_id'].values
                    with image_display.container():
                        st.write('---')
                        st.write(f'### Images generated with {icon} {model_name}, {modelVersion_name}')
                        col_num = 4
                        image_cols = st.columns(col_num)
                        for i in range(len(images)):
                            with image_cols[i % col_num]:
                                image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{images[i]}.png"
                                st.image(image, use_column_width=True)

    def podium_expander(self, modelVersion_standings, n=3):
        # st.write('## Top picks')
        # metric_cols = st.columns(n)
        for i in range(n):
            # with metric_cols[i]:
            modelVersion_id = modelVersion_standings[i][0]
            winning_times = modelVersion_standings[i][1]

            model_id, model_name, modelVersion_name, url = self.roster[self.roster['modelVersion_id'] == modelVersion_id][['model_id', 'model_name', 'modelVersion_name', 'modelVersion_url']].values[0]

            icon = '๐Ÿฅ‡'if i == 0 else '๐Ÿฅˆ' if i == 1 else '๐Ÿฅ‰'
            podium_display = st.columns([1, 14])
            with podium_display[0]:
                st.title(f'{icon}')
            with podium_display[1]:
                st.write(f'##### {model_name}, {modelVersion_name}')
                st.write(f'[Civitai Page](https://civitai.com/models/{model_id}?modelVersionId={modelVersion_id}), [Model Download Link]({url}), Ranking Score: {winning_times}')
                # with st.expander(f'**{icon} {model_name}, [{modelVersion_name}](https://civitai.com/models/{model_id}?modelVersionId={modelVersion_id})**, Ranking Score: {winning_times}'):
                with st.expander(f'Show Images'):
                    images = self.promptBook[self.promptBook['modelVersion_id'] == modelVersion_id]['image_id'].values

                    safety_check = st.toggle('Include potentially unsafe or offensive images', value=False, key=modelVersion_id)
                    unsafe_prompts = json.load(open('data/unsafe_prompts.json', 'r'))
                    # merge dict values into one list
                    unsafe_prompts = [item for sublist in unsafe_prompts.values() for item in sublist]
                    unsafe_images = self.promptBook[self.promptBook['prompt_id'].isin(unsafe_prompts)]['image_id'].values

                    if not safety_check:
                        # exclude unsafe prompts from images
                        images = [image for image in images if image not in unsafe_images]

                    # st.write(f'### Images generated with {icon} {model_name}, {modelVersion_name}')
                    col_num = 4
                    image_cols = st.columns(col_num)

                    for j in range(len(images)):
                        with image_cols[j % col_num]:
                            image = f"https://modelcofferbucket.s3-accelerate.amazonaws.com/{images[j]}.png"
                            st.image(image, use_column_width=True)
            if i != n - 1:
                st.write('---')

    def score_calculator(self, results, db_table):
        modelVersion_standings = {}
        if db_table == 'battle_results':
            # sort results by battle time
            results = sorted(results, key=lambda x: x['battletime'])

            for record in results:
                modelVersion_standings[record['winner']] = modelVersion_standings.get(record['winner'], 0) + 1

                # add the loser who never wins
                if record['loser'] not in modelVersion_standings:
                    modelVersion_standings[record['loser']] = 0

                # add the winning time of the loser to the winner
                modelVersion_standings[record['winner']] += modelVersion_standings[record['loser']]

        elif db_table == 'sort_results':
            pts_map = {'position1': 5, 'position2': 3, 'position3': 1, 'position4': 0}
            for record in results:
                for i in range(1, 5):
                    modelVersion_standings[record[f'position{i}']] = modelVersion_standings.get(record[f'position{i}'], 0) + pts_map[f'position{i}']

        return modelVersion_standings

    def app(self):
        st.write('### Your Preferred Models')

        # mode = st.sidebar.radio('Ranking mode', ['Drag and Sort', 'Battle'], horizontal=True, index=1)
        mode = st.session_state.assigned_rank_mode
        # get tags from database of the current user
        db_table = 'sort_results' if mode == 'Drag and Sort' else 'battle_results'

        tags = ['all']
        curser = RANKING_CONN.cursor()
        curser.execute(
            f"SELECT DISTINCT tag FROM {db_table} WHERE username = '{st.session_state.user_id[0]}' AND timestamp = '{st.session_state.user_id[1]}'")
        for row in curser.fetchall():
            tags.append(row['tag'])
        curser.close()

        if tags == ['all']:
            st.info(f'No rankings are finished with {mode} mode yet.')

        else:
            tag = self.sidebar(tags, mode)
            self.leaderboard(tag, db_table)

        comment = st.chat_input('Please leave your comments here.', key='comment')
        if comment:
            commenttime = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            curser = RANKING_CONN.cursor()
            # parse the comment to at most 300 to avoid SQL injection
            for i in range(0, len(comment), 300):
                curser.execute(f"INSERT INTO comments (username, timestamp, comment, commenttime) VALUES ('{st.session_state.user_id[0]}', '{st.session_state.user_id[1]}', '{comment[i:i+300]}', '{commenttime}')")
            RANKING_CONN.commit()
            curser.close()

            st.toast('Thanks for your feedback! We will take it into consideration in our future work.')


if __name__ == "__main__":
    st.set_page_config(layout="wide")

    if 'user_id' not in st.session_state:
        st.warning('Please log in first.')
        home_btn = st.button('Go to Home Page')
        if home_btn:
            switch_page("home")

    elif 'progress' not in st.session_state:
        st.info('You have not checked any image yet. Please go back to the gallery page and check some images.')
        gallery_btn = st.button('๐Ÿ–ผ๏ธ Go to Gallery')
        if gallery_btn:
            switch_page('gallery')

    else:
        session_finished = []

        for key, value in st.session_state.progress.items():
            if value == 'finished':
                session_finished.append(key)

        if len(session_finished) == 0:
            st.info('A dashboard showing your preferred models will appear after you finish any ranking session.')
            ranking_btn = st.button('๐ŸŽ–๏ธ Go to Ranking')
            if ranking_btn:
                switch_page('ranking')
            gallery_btn = st.button('๐Ÿ–ผ๏ธ Go to Gallery')
            if gallery_btn:
                switch_page('gallery')

        else:
            roster, promptBook, images_ds = load_hf_dataset(st.session_state.show_NSFW)
            RANKING_CONN = connect_to_db()
            app = DashboardApp(roster, promptBook, session_finished)
            app.app()