Spaces:
Sleeping
Sleeping
File size: 6,423 Bytes
2cd207c dbb7d2e 2cd207c dbb7d2e 2cd207c 99a4efe 2cd207c 99a4efe 2cd207c 99a4efe 2cd207c 99a4efe 2cd207c 99a4efe 2cd207c 5acd4d2 2cd207c dbb7d2e 2cd207c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
import streamlit as st
import numpy as np
import random
import pandas as pd
import glob
import csv
from PIL import Image
from datasets import load_dataset, Dataset, load_from_disk
from huggingface_hub import login
import os
import datasets
class GalleryApp:
def __init__(self, promptBook):
self.promptBook = promptBook
st.set_page_config(layout="wide")
def gallery(self, items, col_num, info):
cols = st.columns(col_num)
# # sort items by brisque score
# items = items.sort_values(by=['brisque'], ascending=True).reset_index(drop=True)
for idx in range(len(items)):
with cols[idx % col_num]:
image = st.session_state.images[items.iloc[idx]['row_idx'].item()]['image']
st.image(image,
use_column_width=True,
)
with st.expander('Similarity Info'):
tab1, tab2 = st.tabs(['Most Similar', 'Least Similar'])
with tab1:
st.image(image, use_column_width=True)
with tab2:
st.image(image, use_column_width=True)
for key in info:
st.write(f"**{key}**: {items.iloc[idx][key]}")
def app(self):
st.title('Model Coffer Gallery')
st.write('This is a gallery of images generated by the models in the Model Coffer')
# metadata, images = st.columns([1, 3])
# with images:
# prompt_tags = self.promptBook['tag'].unique()
# # sort tags by alphabetical order
# prompt_tags = np.sort(prompt_tags)
#
# selecters = st.columns(3)
# with selecters[0]:
# tag = st.selectbox('Select a tag', prompt_tags)
with st.sidebar:
prompt_tags = self.promptBook['tag'].unique()
# sort tags by alphabetical order
prompt_tags = np.sort(prompt_tags)[::-1]
tag = st.selectbox('Select a tag', prompt_tags)
items = self.promptBook[self.promptBook['tag'] == tag].reset_index(drop=True)
original_prompts = np.sort(items['prompt'].unique())[::-1]
# remove the first four items in the prompt, which are mostly the same
prompts = [', '.join(x.split(', ')[4:]) for x in original_prompts]
prompt = st.selectbox('Select prompt', prompts)
idx = prompts.index(prompt)
prompt_full = ', '.join(original_prompts[idx].split(', ')[:4]) + ', ' + prompt
prompt_id = items[items['prompt'] == prompt_full]['prompt_id'].unique()[0]
items = items[items['prompt_id'] == prompt_id].reset_index(drop=True)
st.write('**Prompt ID**')
st.caption(f"{prompt_id}")
st.write('**Prompt**')
st.caption(f"{items['prompt'][0]}")
st.write('**Negative Prompt**')
st.caption(f"{items['negativePrompt'][0]}")
st.write('**Sampler**')
st.caption(f"{items['sampler'][0]}")
st.write('**cfgScale**')
st.caption(f"{items['cfgScale'][0]}")
st.write('**Size**')
st.caption(f"width: {items['size'][0].split('x')[0]}, height: {items['size'][0].split('x')[1]}")
st.write('**Seed**')
st.caption(f"{items['seed'][0]}")
# with images:
selecters = st.columns([1, 1, 2])
with selecters[0]:
sort_by = st.selectbox('Sort by', items.columns[11: -1])
with selecters[1]:
order = st.selectbox('Order', ['Ascending', 'Descending'], index=1 if sort_by == 'clip_score' or sort_by == 'model_download_count' else 0)
if order == 'Ascending':
order = True
else:
order = False
items = items.sort_values(by=[sort_by], ascending=order).reset_index(drop=True)
with selecters[2]:
info = st.multiselect('Show Info',
['brisque_score', 'clip_score', 'model_download_count', 'model_name', 'model_id',
'modelVersion_name', 'modelVersion_id'],
default=sort_by)
col_num = st.slider('Number of columns', min_value=1, max_value=9, value=4, step=1, key='col_num')
self.gallery(items, col_num, info)
if __name__ == '__main__':
login(token=os.environ.get("HF_TOKEN"))
if 'roster' not in st.session_state:
print('loading roster')
# st.session_state.roster = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferRoster', split='train'))
st.session_state.roster = pd.DataFrame(load_from_disk(os.path.join(os.getcwd(), 'data', 'roster')))
st.session_state.roster = st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name',
'model_download_count']].drop_duplicates().reset_index(drop=True)
# add model download count from roster to promptbook dataframe
if 'promptBook' not in st.session_state:
print('loading promptBook')
st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferMetadata', split='train'))
st.session_state.images = load_from_disk(os.path.join(os.getcwd(), 'data', 'promptbook'))['train']
print(st.session_state.images)
print('images loaded')
# st.session_state.promptBook = pd.DataFrame(load_dataset('NYUSHPRP/ModelCofferPromptBook', split='train'))
st.session_state.promptBook = st.session_state.promptBook.merge(st.session_state.roster[['model_id', 'model_name', 'modelVersion_id', 'modelVersion_name', 'model_download_count']], on=['model_id', 'modelVersion_id'], how='left')
# add column to record current row index
st.session_state.promptBook['row_idx'] = st.session_state.promptBook.index
print('promptBook loaded')
# print(st.session_state.promptBook)
check_roster_error = False
if check_roster_error:
# print all rows with the same model_id and modelVersion_id but different model_download_count in roster
print(st.session_state.roster[st.session_state.roster.duplicated(subset=['model_id', 'modelVersion_id'], keep=False)].sort_values(by=['model_id', 'modelVersion_id']))
app = GalleryApp(promptBook=st.session_state.promptBook)
app.app()
|