sudoping01's picture
Update app.py
c726970 verified
raw
history blame
7.34 kB
import gradio as gr
import pandas as pd
from datasets import load_dataset
from jiwer import wer, cer
import os
from datetime import datetime
import re
# Load the Bambara ASR dataset
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"]
references = {row["id"]: row["text"] for row in dataset}
# Initialize leaderboard file if it doesn't exist
leaderboard_file = "leaderboard.csv"
if not os.path.exists(leaderboard_file):
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False)
def normalize_text(text):
"""
Normalize text for WER/CER calculation:
- Convert to lowercase
- Remove punctuation
- Replace multiple spaces with single space
- Strip leading/trailing spaces
"""
if not isinstance(text, str):
text = str(text)
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def calculate_metrics(predictions_df):
"""Calculate WER and CER for predictions against reference dataset."""
results = []
for _, row in predictions_df.iterrows():
id_val = row["id"]
if id_val not in references:
continue
reference = normalize_text(references[id_val])
hypothesis = normalize_text(row["text"])
if not reference or not hypothesis:
continue
try:
sample_wer = wer(reference, hypothesis)
sample_cer = cer(reference, hypothesis)
results.append({
"id": id_val,
"wer": sample_wer,
"cer": sample_cer
})
except Exception:
pass # Skip invalid samples silently
if not results:
raise ValueError("No valid samples available for metric calculation")
avg_wer = sum(item["wer"] for item in results) / len(results)
avg_cer = sum(item["cer"] for item in results) / len(results)
return avg_wer, avg_cer, results
def process_submission(submitter_name, csv_file):
"""Process the uploaded CSV, calculate metrics, and update the leaderboard."""
try:
df = pd.read_csv(csv_file)
if len(df) == 0:
return "Submission failed: The uploaded CSV file is empty. Please upload a valid CSV file with predictions.", None
if set(df.columns) != {"id", "text"}:
return f"Submission failed: The CSV file must contain exactly two columns: 'id' and 'text'. Found: {', '.join(df.columns)}", None
if df["id"].duplicated().any():
dup_ids = df[df["id"].duplicated(keep=False)]["id"].unique()
return f"Submission failed: Duplicate 'id' values detected: {', '.join(map(str, dup_ids[:5]))}", None
missing_ids = set(references.keys()) - set(df["id"])
extra_ids = set(df["id"]) - set(references.keys())
if missing_ids:
return f"Submission failed: Missing {len(missing_ids)} required 'id' values. First few: {', '.join(map(str, list(missing_ids)[:5]))}", None
if extra_ids:
return f"Submission failed: Found {len(extra_ids)} unrecognized 'id' values. First few: {', '.join(map(str, list(extra_ids)[:5]))}", None
empty_ids = [row["id"] for _, row in df.iterrows() if not normalize_text(row["text"])]
if empty_ids:
return f"Submission failed: Empty transcriptions detected for {len(empty_ids)} 'id' values. First few: {', '.join(map(str, empty_ids[:5]))}", None
# Calculate metrics
avg_wer, avg_cer, detailed_results = calculate_metrics(df)
n_valid = len(detailed_results)
if n_valid == 0:
return "Submission failed: No valid samples found for metric calculation.", None
# Update leaderboard
leaderboard = pd.read_csv(leaderboard_file)
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
new_entry = pd.DataFrame(
[[submitter_name, avg_wer, avg_cer, timestamp]],
columns=["submitter", "WER", "CER", "timestamp"]
)
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER")
leaderboard.to_csv(leaderboard_file, index=False)
# Format leaderboard for display
display_leaderboard = leaderboard.copy()
display_leaderboard["WER"] = display_leaderboard["WER"].apply(lambda x: f"{x:.4f}")
display_leaderboard["CER"] = display_leaderboard["CER"].apply(lambda x: f"{x:.4f}")
return f"Your submission has been successfully processed. Evaluated {n_valid} valid samples. WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", display_leaderboard
except Exception as e:
return f"Submission failed: An error occurred while processing your file - {str(e)}", None
def load_and_format_leaderboard():
"""Load the leaderboard and format WER/CER for display."""
if os.path.exists(leaderboard_file):
leaderboard = pd.read_csv(leaderboard_file)
leaderboard["WER"] = leaderboard["WER"].apply(lambda x: f"{x:.4f}")
leaderboard["CER"] = leaderboard["CER"].apply(lambda x: f"{x:.4f}")
return leaderboard
return pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"])
# Gradio interface
with gr.Blocks(title="Bambara ASR Benchmark Leaderboard") as demo:
gr.Markdown(
"""
## Bambara ASR Benchmark Leaderboard
**Welcome to the Bambara Automatic Speech Recognition (ASR) Benchmark Leaderboard**
Evaluate your ASR model's performance on the Bambara language dataset.
### Submission Instructions
1. Prepare a CSV file with two columns:
- **`id`**: Must match identifiers in the official dataset.
- **`text`**: Your model's transcription predictions.
2. Ensure the CSV file meets these requirements:
- Contains only `id` and `text` columns.
- No duplicate `id` values.
- All `id` values match dataset entries.
3. Upload your CSV file below.
### Dataset
Access the official dataset: [Bambara ASR Dataset](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset)
### Evaluation Metrics
- **Word Error Rate (WER)**: Word-level transcription accuracy (lower is better).
- **Character Error Rate (CER)**: Character-level accuracy (lower is better).
### Leaderboard
Submissions are ranked by WER and include:
- Submitter name
- WER (4 decimal places)
- CER (4 decimal places)
- Submission timestamp
"""
)
with gr.Row():
submitter = gr.Textbox(label="Submitter Name or Model Identifier", placeholder="e.g., MALIBA-AI/asr")
csv_upload = gr.File(label="Upload Prediction CSV File", file_types=[".csv"])
submit_btn = gr.Button("Evaluate Submission")
output_msg = gr.Textbox(label="Submission Status", interactive=False)
leaderboard_display = gr.DataFrame(
label="Current Leaderboard",
value=load_and_format_leaderboard(),
interactive=False
)
submit_btn.click(
fn=process_submission,
inputs=[submitter, csv_upload],
outputs=[output_msg, leaderboard_display]
)
if __name__ == "__main__":
demo.launch(share=True)