|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from jiwer import wer, cer, transforms |
|
import os |
|
from datetime import datetime |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.RemovePunctuation(), |
|
transforms.ToLowerCase(), |
|
transforms.RemoveWhiteSpace(replace_by_space=True), |
|
]) |
|
|
|
|
|
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"] |
|
references = {row["id"]: row["text"] for row in dataset} |
|
|
|
|
|
leaderboard_file = "leaderboard.csv" |
|
if not os.path.exists(leaderboard_file): |
|
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False) |
|
|
|
def process_submission(submitter_name, csv_file): |
|
|
|
try: |
|
|
|
df = pd.read_csv(csv_file) |
|
if set(df.columns) != {"id", "prediction"}: |
|
return "Error: CSV must contain exactly 'id' and 'prediction' columns.", None |
|
if df["id"].duplicated().any(): |
|
return "Error: Duplicate 'id's found in the CSV.", None |
|
if set(df["id"]) != set(references.keys()): |
|
return "Error: CSV 'id's must match the dataset 'id's.", None |
|
|
|
|
|
wers, cers = [], [] |
|
for _, row in df.iterrows(): |
|
ref = references[row["id"]] |
|
pred = row["prediction"] |
|
wers.append(wer(ref, pred, standardize=transform)) |
|
cers.append(cer(ref, pred, standardize=transform)) |
|
|
|
|
|
avg_wer = sum(wers) / len(wers) |
|
avg_cer = sum(cers) / len(cers) |
|
|
|
|
|
leaderboard = pd.read_csv(leaderboard_file) |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
new_entry = pd.DataFrame( |
|
[[submitter_name, avg_wer, avg_cer, timestamp]], |
|
columns=["submitter", "WER", "CER", "timestamp"] |
|
) |
|
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER") |
|
leaderboard.to_csv(leaderboard_file, index=False) |
|
|
|
return "Submission processed successfully!", leaderboard |
|
except Exception as e: |
|
return f"Error processing submission: {str(e)}", None |
|
|
|
|
|
with gr.Blocks(title="Bambara ASR Leaderboard") as demo: |
|
gr.Markdown( |
|
""" |
|
# Bambara ASR Leaderboard |
|
Upload a CSV file with 'id' and 'text' columns to evaluate your ASR predictions. |
|
The 'id's must match those in the dataset. |
|
[View the dataset here](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset). |
|
|
|
- **WER**: Word Error Rate (lower is better). |
|
- **CER**: Character Error Rate (lower is better). |
|
""" |
|
) |
|
with gr.Row(): |
|
submitter = gr.Textbox(label="Submitter Name or Model Name", placeholder="e.g., MALIBA-AI/asr") |
|
csv_upload = gr.File(label="Upload CSV File", file_types=[".csv"]) |
|
submit_btn = gr.Button("Submit") |
|
output_msg = gr.Textbox(label="Status", interactive=False) |
|
leaderboard_display = gr.DataFrame( |
|
label="Leaderboard", |
|
value=pd.read_csv(leaderboard_file), |
|
interactive=False |
|
) |
|
|
|
submit_btn.click( |
|
fn=process_submission, |
|
inputs=[submitter, csv_upload], |
|
outputs=[output_msg, leaderboard_display] |
|
) |
|
|
|
demo.launch() |