|
import gradio as gr |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from jiwer import wer, cer |
|
import os |
|
from datetime import datetime |
|
import re |
|
|
|
|
|
dataset = load_dataset("sudoping01/bambara-asr-benchmark", name="default")["train"] |
|
references = {row["id"]: row["text"] for row in dataset} |
|
|
|
|
|
leaderboard_file = "leaderboard.csv" |
|
if not os.path.exists(leaderboard_file): |
|
pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]).to_csv(leaderboard_file, index=False) |
|
|
|
def normalize_text(text): |
|
""" |
|
Normalize text for WER/CER calculation: |
|
- Convert to lowercase |
|
- Remove punctuation |
|
- Replace multiple spaces with single space |
|
- Strip leading/trailing spaces |
|
""" |
|
if not isinstance(text, str): |
|
text = str(text) |
|
text = text.lower() |
|
text = re.sub(r'[^\w\s]', '', text) |
|
text = re.sub(r'\s+', ' ', text).strip() |
|
return text |
|
|
|
def calculate_metrics(predictions_df): |
|
""" |
|
Calculate WER and CER for predictions against the reference dataset. |
|
""" |
|
results = [] |
|
for _, row in predictions_df.iterrows(): |
|
id_val = row["id"] |
|
if id_val not in references: |
|
continue |
|
reference = normalize_text(references[id_val]) |
|
hypothesis = normalize_text(row["text"]) |
|
if not reference or not hypothesis: |
|
continue |
|
try: |
|
sample_wer = wer(reference, hypothesis) |
|
sample_cer = cer(reference, hypothesis) |
|
results.append({ |
|
"id": id_val, |
|
"wer": sample_wer, |
|
"cer": sample_cer |
|
}) |
|
except Exception: |
|
pass |
|
if not results: |
|
raise ValueError("No valid samples available for metric calculation") |
|
avg_wer = sum(item["wer"] for item in results) / len(results) |
|
avg_cer = sum(item["cer"] for item in results) / len(results) |
|
return avg_wer, avg_cer, results |
|
|
|
def process_submission(submitter_name, csv_file): |
|
""" |
|
Process the uploaded CSV, calculate metrics, and update the leaderboard. |
|
""" |
|
try: |
|
df = pd.read_csv(csv_file) |
|
if len(df) == 0: |
|
return "Submission failed: The uploaded CSV file is empty. Please upload a valid CSV file with predictions.", None |
|
if set(df.columns) != {"id", "text"}: |
|
return f"Submission failed: The CSV file must contain exactly two columns: 'id' and 'text'. Found: {', '.join(df.columns)}", None |
|
if df["id"].duplicated().any(): |
|
dup_ids = df[df["id"].duplicated(keep=False)]["id"].unique() |
|
return f"Submission failed: Duplicate 'id' values detected: {', '.join(map(str, dup_ids[:5]))}", None |
|
missing_ids = set(references.keys()) - set(df["id"]) |
|
extra_ids = set(df["id"]) - set(references.keys()) |
|
if missing_ids: |
|
return f"Submission failed: Missing {len(missing_ids)} required 'id' values. First few: {', '.join(map(str, list(missing_ids)[:5]))}", None |
|
if extra_ids: |
|
return f"Submission failed: Found {len(extra_ids)} unrecognized 'id' values. First few: {', '.join(map(str, list(extra_ids)[:5]))}", None |
|
empty_ids = [row["id"] for _, row in df.iterrows() if not normalize_text(row["text"])] |
|
if empty_ids: |
|
return f"Submission failed: Empty transcriptions detected for {len(empty_ids)} 'id' values. First few: {', '.join(map(str, empty_ids[:5]))}", None |
|
|
|
|
|
avg_wer, avg_cer, detailed_results = calculate_metrics(df) |
|
n_valid = len(detailed_results) |
|
if n_valid == 0: |
|
return "Submission failed: No valid samples found for metric calculation.", None |
|
|
|
|
|
leaderboard = pd.read_csv(leaderboard_file) |
|
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
new_entry = pd.DataFrame( |
|
[[submitter_name, avg_wer, avg_cer, timestamp]], |
|
columns=["submitter", "WER", "CER", "timestamp"] |
|
) |
|
leaderboard = pd.concat([leaderboard, new_entry]).sort_values("WER") |
|
leaderboard.to_csv(leaderboard_file, index=False) |
|
|
|
|
|
display_leaderboard = leaderboard.copy() |
|
display_leaderboard["WER"] = display_leaderboard["WER"].apply(lambda x: f"{x:.4f}") |
|
display_leaderboard["CER"] = display_leaderboard["CER"].apply(lambda x: f"{x:.4f}") |
|
|
|
return f"Your submission has been successfully processed. Evaluated {n_valid} valid samples. WER: {avg_wer:.4f}, CER: {avg_cer:.4f}", display_leaderboard |
|
|
|
except Exception as e: |
|
return f"Submission failed: An error occurred while processing your file - {str(e)}", None |
|
|
|
def load_and_format_leaderboard(): |
|
""" |
|
Load the leaderboard and format WER/CER for display. |
|
""" |
|
if os.path.exists(leaderboard_file): |
|
leaderboard = pd.read_csv(leaderboard_file) |
|
leaderboard["WER"] = leaderboard["WER"].apply(lambda x: f"{x:.4f}") |
|
leaderboard["CER"] = leaderboard["CER"].apply(lambda x: f"{x:.4f}") |
|
return leaderboard |
|
return pd.DataFrame(columns=["submitter", "WER", "CER", "timestamp"]) |
|
|
|
|
|
with gr.Blocks(title="Bambara ASR Benchmark Leaderboard") as demo: |
|
gr.Markdown( |
|
""" |
|
## Bambara ASR Benchmark Leaderboard |
|
|
|
**Welcome to the Bambara Automatic Speech Recognition (ASR) Benchmark Leaderboard** |
|
Evaluate your ASR model's performance on the Bambara language dataset. |
|
|
|
### Submission Instructions |
|
1. Prepare a CSV file with two columns: |
|
- **`id`**: Must match identifiers in the official dataset. |
|
- **`text`**: Your model's transcription predictions. |
|
2. Ensure the CSV file meets these requirements: |
|
- Contains only `id` and `text` columns. |
|
- No duplicate `id` values. |
|
- All `id` values match dataset entries. |
|
3. Upload your CSV file below. |
|
|
|
### Dataset |
|
Access the official dataset: [Bambara ASR Dataset](https://huggingface.co/datasets/MALIBA-AI/bambara_general_leaderboard_dataset) |
|
|
|
### Evaluation Metrics |
|
- **Word Error Rate (WER)**: Word-level transcription accuracy (lower is better). |
|
- **Character Error Rate (CER)**: Character-level accuracy (lower is better). |
|
|
|
### Leaderboard |
|
Submissions are ranked by WER and include: |
|
- Submitter name |
|
- WER (4 decimal places) |
|
- CER (4 decimal places) |
|
- Submission timestamp |
|
""" |
|
) |
|
with gr.Row(): |
|
submitter = gr.Textbox(label="Submitter Name or Model Identifier", placeholder="e.g., MALIBA-AI/asr") |
|
csv_upload = gr.File(label="Upload Prediction CSV File", file_types=[".csv"]) |
|
submit_btn = gr.Button("Evaluate Submission") |
|
output_msg = gr.Textbox(label="Submission Status", interactive=False) |
|
leaderboard_display = gr.DataFrame( |
|
label="Current Leaderboard", |
|
value=load_and_format_leaderboard(), |
|
interactive=False |
|
) |
|
submit_btn.click( |
|
fn=process_submission, |
|
inputs=[submitter, csv_upload], |
|
outputs=[output_msg, leaderboard_display] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(share=True) |