Spaces:
Runtime error
Runtime error
File size: 10,445 Bytes
045894b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import os
import wget
# apex_file = wget.download(os.getenv('apex'))
# os.system('tar zxvf {}'.format(apex_file))
# os.system('ls -l; cd apex;'
# 'pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" .; cd ..')
# os.system('pip install gradio --upgrade')
resources = os.getenv('resources')
resources_tokenizer = os.getenv('resources_tokenizer')
_ = wget.download(resources_tokenizer)
resources_filename = wget.download(resources)
os.system('tar zxvf {}'.format(resources_filename))
if not os.path.exists('./model_optim_rng.pth'):
resources_weight = os.getenv('resources_weight')
_ = wget.download(resources_weight)
os.system('ls -l')
import time
import argparse
import datetime
import json
import re
import os
import gradio as gr
import requests
from utils import (
mplug_owl, load_demo_refresh_model_list, vote_last_response,
upvote_last_response, downvote_last_response, flag_last_response, regenerate,
add_text, after_process_image, get_inputs, init,
headers, no_change_btn, enable_btn, disable_btn, get_window_url_params
)
from gradio_css import code_highlight_css
from gradio_patch import Chatbot as grChatbot
from conversation import default_conversation
SHARED_UI_WARNING = f'''### [NOTE]
You can duplicate and use it with a paid private GPU.
<a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/MAGAer13/mPLUG-Owl?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://huggingface.co/datasets/huggingface/badges/raw/main/duplicate-this-space-xl-dark.svg" alt="Duplicate Space"></a>
Alternatively, you can also use the Colab demo on our project page.
<a style="display:inline-block" href="https://https://github.com/X-PLUG/mPLUG-Owl"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/Project%20Page-online-brightgreen"></a>
'''
io = None
init()
model = mplug_owl(device="cuda")
log_dir = ""
def load_demo(url_params, request: gr.Request):
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(
value=model, visible=True)
state = default_conversation.copy()
return (state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True))
def contains_chinese(string):
pattern = re.compile(r'[一-龥]')
match = pattern.search(string)
return match is not None
def clear_history(request: gr.Request):
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def http_bot(state, topk, max_new_tokens, random_seed, request: gr.Request):
prompt = after_process_image(state.get_prompt())
images = state.get_images()
state.messages[-1][-1] = "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
if contains_chinese(prompt):
state.messages[-1][-1] = "**CURRENTLY WE ONLY SUPPORT ENGLISH. PLEASE REFRESH THIS PAGE TO RESTART.**"
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
try:
data = get_inputs(prompt, images, topk, max_new_tokens, random_seed)
output = model.prediction(data, log_dir)
print(output)
# output = output.replace("```", "")
state.messages[-1][-1] = output + "▌"
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
title_markdown = ("""
# mPLUG-Owl🦉 (GitHub Repo: https://github.com/X-PLUG/mPLUG-Owl)
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
Copyright 2023 Alibaba DAMO Academy.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
css = code_highlight_css + """
version 1.0
"""
def build_demo():
#with gr.Blocks(title="mPLUG-Owl🦉", theme=gr.themes.Base(), css=css) as demo:
with gr.Blocks(title="mPLUG-Owl🦉") as demo:
state = gr.State()
with gr.Box():
gr.Markdown(SHARED_UI_WARNING)
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
imagebox = gr.Image(type="pil")
with gr.Accordion("Parameters", open=True, visible=False) as parameter_row:
topk = gr.Slider(minimum=1, maximum=5, value=5, step=1, interactive=True, label="Top K",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
temperature = gr.Slider(minimum=0, maximum=10, value=1, step=0.1, interactive=True, label="Temperature",)
gr.Markdown(tos_markdown)
with gr.Column(scale=6):
chatbot = grChatbot(elem_id="chatbot", visible=False).style(height=550)
with gr.Row():
with gr.Column(scale=8):
textbox = gr.Textbox(show_label=False,
placeholder="Enter text and press ENTER", visible=False).style(container=False)
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
gr.Examples(examples=[
[f"examples/monday.jpg", "Explain why this meme is funny."],
[f'examples/rap.jpeg', 'Can you write me a master rap song that rhymes very well based on this image?'],
[f'examples/titanic.jpeg', 'What happened at the end of this movie?'],
[f'examples/vga.jpeg', 'What is funny about this image? Describe it panel by panel.'],
[f'examples/mug_ad.jpeg', 'We design new mugs shown in the image. Can you help us write an advertisement?'],
[f'examples/laundry.jpeg', 'Why this happens and how to fix it?'],
[f'examples/ca.jpeg', "What do you think about the person's behavior?"],
[f'examples/monalisa-fun.jpg', 'Do you know who drew this painting?'],
[f"examples/Yao_Ming.jpeg", "What is the name of the man on the right?"],
], inputs=[imagebox, textbox])
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, state,
[state, chatbot, textbox, imagebox] + btn_list).then(
http_bot, [state, topk, max_output_tokens, temperature],
[state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox], [state, chatbot, textbox, imagebox] + btn_list
).then(http_bot, [state, topk, max_output_tokens, temperature],
[state, chatbot] + btn_list)
submit_btn.click(add_text, [state, textbox, imagebox], [state, chatbot, textbox, imagebox] + btn_list
).then(http_bot, [state, topk, max_output_tokens, temperature],
[state, chatbot] + btn_list)
demo.load(load_demo, [url_params], [state,
chatbot, textbox, submit_btn, button_row, parameter_row],
_js=get_window_url_params)
return demo
if __name__ == "__main__":
cur_dir = os.getenv("cur_dir")
log_dir = cur_dir + "log"
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=100)
args = parser.parse_args()
demo = build_demo()
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10, api_open=False).launch(server_name=args.host, debug=args.debug, server_port=args.port, share=False)
|