Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.init as init | |
| import torch.nn.functional as F | |
| def initialize_weights(net_l, scale=1): | |
| if not isinstance(net_l, list): | |
| net_l = [net_l] | |
| for net in net_l: | |
| for m in net.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| init.kaiming_normal_(m.weight, a=0, mode='fan_in') | |
| m.weight.data *= scale # for residual block | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.Linear): | |
| init.kaiming_normal_(m.weight, a=0, mode='fan_in') | |
| m.weight.data *= scale | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.BatchNorm2d): | |
| init.constant_(m.weight, 1) | |
| init.constant_(m.bias.data, 0.0) | |
| def make_layer(block, n_layers): | |
| layers = [] | |
| for _ in range(n_layers): | |
| layers.append(block()) | |
| return nn.Sequential(*layers) | |
| class ResidualBlock_noBN(nn.Module): | |
| '''Residual block w/o BN | |
| ---Conv-ReLU-Conv-+- | |
| |________________| | |
| ''' | |
| def __init__(self, nf=64): | |
| super(ResidualBlock_noBN, self).__init__() | |
| self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | |
| self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) | |
| # initialization | |
| initialize_weights([self.conv1, self.conv2], 0.1) | |
| def forward(self, x): | |
| identity = x | |
| out = F.relu(self.conv1(x), inplace=True) | |
| out = self.conv2(out) | |
| return identity + out | |
| def flow_warp(x, flow, interp_mode='bilinear', padding_mode='zeros'): | |
| """Warp an image or feature map with optical flow | |
| Args: | |
| x (Tensor): size (N, C, H, W) | |
| flow (Tensor): size (N, H, W, 2), normal value | |
| interp_mode (str): 'nearest' or 'bilinear' | |
| padding_mode (str): 'zeros' or 'border' or 'reflection' | |
| Returns: | |
| Tensor: warped image or feature map | |
| """ | |
| flow = flow.permute(0,2,3,1) | |
| assert x.size()[-2:] == flow.size()[1:3] | |
| B, C, H, W = x.size() | |
| # mesh grid | |
| grid_y, grid_x = torch.meshgrid(torch.arange(0, H), torch.arange(0, W)) | |
| grid = torch.stack((grid_x, grid_y), 2).float() # W(x), H(y), 2 | |
| grid.requires_grad = False | |
| grid = grid.type_as(x) | |
| vgrid = grid + flow | |
| # scale grid to [-1,1] | |
| vgrid_x = 2.0 * vgrid[:, :, :, 0] / max(W - 1, 1) - 1.0 | |
| vgrid_y = 2.0 * vgrid[:, :, :, 1] / max(H - 1, 1) - 1.0 | |
| vgrid_scaled = torch.stack((vgrid_x, vgrid_y), dim=3) | |
| output = F.grid_sample(x, vgrid_scaled, mode=interp_mode, padding_mode=padding_mode) | |
| return output |