|
import time |
|
import gradio as gr |
|
from openai import OpenAI |
|
|
|
def format_time(seconds_float): |
|
total_seconds = int(round(seconds_float)) |
|
hours = total_seconds // 3600 |
|
remaining_seconds = total_seconds % 3600 |
|
minutes = remaining_seconds // 60 |
|
seconds = remaining_seconds % 60 |
|
|
|
if hours > 0: |
|
return f"{hours}h {minutes}m {seconds}s" |
|
elif minutes > 0: |
|
return f"{minutes}m {seconds}s" |
|
else: |
|
return f"{seconds}s" |
|
|
|
DESCRIPTION = ''' |
|
# Duplicate the space for free private inference. |
|
## DeepSeek-R1 Distill Qwen-32B Demo |
|
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities. |
|
''' |
|
|
|
CSS = """ |
|
.spinner { |
|
animation: spin 1s linear infinite; |
|
display: inline-block; |
|
margin-right: 8px; |
|
} |
|
@keyframes spin { |
|
from { transform: rotate(0deg); } |
|
to { transform: rotate(360deg); } |
|
} |
|
.thinking-summary { |
|
cursor: pointer; |
|
padding: 8px; |
|
background: #f5f5f5; |
|
border-radius: 4px; |
|
margin: 4px 0; |
|
} |
|
.thought-content { |
|
padding: 10px; |
|
background: #f8f9fa; |
|
border-radius: 4px; |
|
margin: 5px 0; |
|
} |
|
.thinking-container { |
|
border-left: 3px solid #facc15; |
|
padding-left: 10px; |
|
margin: 8px 0; |
|
background: #210c29; |
|
} |
|
details:not([open]) .thinking-container { |
|
border-left-color: #290c15; |
|
} |
|
details { |
|
border: 1px solid #e0e0e0 !important; |
|
border-radius: 8px !important; |
|
padding: 12px !important; |
|
margin: 8px 0 !important; |
|
transition: border-color 0.2s; |
|
} |
|
""" |
|
|
|
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required") |
|
|
|
def user(message, history): |
|
return "", history + [[message, None]] |
|
|
|
class ParserState: |
|
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time'] |
|
def __init__(self): |
|
self.answer = "" |
|
self.thought = "" |
|
self.in_think = False |
|
self.start_time = 0 |
|
self.last_pos = 0 |
|
self.total_think_time = 0.0 |
|
|
|
def parse_response(text, state): |
|
buffer = text[state.last_pos:] |
|
state.last_pos = len(text) |
|
|
|
while buffer: |
|
if not state.in_think: |
|
think_start = buffer.find('<think>') |
|
if think_start != -1: |
|
state.answer += buffer[:think_start] |
|
state.in_think = True |
|
state.start_time = time.perf_counter() |
|
buffer = buffer[think_start + 7:] |
|
else: |
|
state.answer += buffer |
|
break |
|
else: |
|
think_end = buffer.find('</think>') |
|
if think_end != -1: |
|
state.thought += buffer[:think_end] |
|
|
|
duration = time.perf_counter() - state.start_time |
|
state.total_think_time += duration |
|
state.in_think = False |
|
buffer = buffer[think_end + 8:] |
|
else: |
|
state.thought += buffer |
|
break |
|
|
|
elapsed = time.perf_counter() - state.start_time if state.in_think else 0 |
|
return state, elapsed |
|
|
|
def format_response(state, elapsed): |
|
answer_part = state.answer.replace('<think>', '').replace('</think>', '') |
|
collapsible = [] |
|
collapsed = "<details open>" |
|
|
|
if state.thought or state.in_think: |
|
if state.in_think: |
|
|
|
total_elapsed = state.total_think_time + elapsed |
|
formatted_time = format_time(total_elapsed) |
|
status = f"🌀 Thinking for {formatted_time}" |
|
else: |
|
|
|
formatted_time = format_time(state.total_think_time) |
|
status = f"✅ Thought for {formatted_time}" |
|
collapsed = "<details>" |
|
collapsible.append( |
|
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>" |
|
) |
|
|
|
return collapsible, answer_part |
|
|
|
def generate_response(history, temperature, top_p, max_tokens, active_gen): |
|
messages = [{"role": "user", "content": history[-1][0]}] |
|
full_response = "" |
|
state = ParserState() |
|
last_update = 0 |
|
|
|
try: |
|
stream = client.chat.completions.create( |
|
model="", |
|
messages=messages, |
|
temperature=temperature, |
|
top_p=top_p, |
|
max_tokens=max_tokens, |
|
stream=True |
|
) |
|
|
|
for chunk in stream: |
|
if not active_gen[0]: |
|
break |
|
|
|
if chunk.choices[0].delta.content: |
|
full_response += chunk.choices[0].delta.content |
|
state, elapsed = parse_response(full_response, state) |
|
|
|
collapsible, answer_part = format_response(state, elapsed) |
|
history[-1][1] = "\n\n".join(collapsible + [answer_part]) |
|
yield history |
|
|
|
|
|
state, elapsed = parse_response(full_response, state) |
|
collapsible, answer_part = format_response(state, elapsed) |
|
history[-1][1] = "\n\n".join(collapsible + [answer_part]) |
|
yield history |
|
|
|
except Exception as e: |
|
history[-1][1] = f"Error: {str(e)}" |
|
yield history |
|
finally: |
|
active_gen[0] = False |
|
|
|
with gr.Blocks(css=CSS) as demo: |
|
gr.Markdown(DESCRIPTION) |
|
active_gen = gr.State([False]) |
|
|
|
chatbot = gr.Chatbot( |
|
elem_id="chatbot", |
|
height=500, |
|
show_label=False, |
|
render_markdown=True |
|
) |
|
|
|
with gr.Row(): |
|
msg = gr.Textbox( |
|
label="Message", |
|
placeholder="Type your message...", |
|
container=False, |
|
scale=4 |
|
) |
|
submit_btn = gr.Button("Send", variant='primary', scale=1) |
|
|
|
with gr.Column(scale=2): |
|
with gr.Row(): |
|
clear_btn = gr.Button("Clear", variant='secondary') |
|
stop_btn = gr.Button("Stop", variant='stop') |
|
|
|
with gr.Accordion("Parameters", open=False): |
|
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature") |
|
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p") |
|
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens") |
|
|
|
gr.Examples( |
|
examples=[ |
|
["How many r's are in the word strawberry?"], |
|
["Write 10 funny sentences that end in a fruit!"], |
|
["Let’s play word chains! I’ll start: Tacos. Your turn! Next word must start with… L!"] |
|
], |
|
inputs=msg, |
|
label="Example Prompts" |
|
) |
|
|
|
submit_event = submit_btn.click( |
|
user, [msg, chatbot], [msg, chatbot], queue=False |
|
).then( |
|
lambda: [True], outputs=active_gen |
|
).then( |
|
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot |
|
) |
|
|
|
msg.submit( |
|
user, [msg, chatbot], [msg, chatbot], queue=False |
|
).then( |
|
lambda: [True], outputs=active_gen |
|
).then( |
|
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot |
|
) |
|
|
|
stop_btn.click( |
|
lambda: [False], None, active_gen, cancels=[submit_event] |
|
) |
|
|
|
clear_btn.click(lambda: None, None, chatbot, queue=False) |
|
|
|
if __name__ == "__main__": |
|
demo.launch(server_name="0.0.0.0", server_port=7860) |