File size: 7,464 Bytes
587fdab c50732d 587fdab c50732d 1e58ec0 587fdab 45b4a69 587fdab 45b4a69 587fdab 45b4a69 587fdab c50732d 587fdab c50732d 587fdab c50732d 587fdab 45b4a69 587fdab c50732d 45b4a69 587fdab 45b4a69 587fdab c50732d 587fdab c50732d 587fdab c50732d 587fdab 45b4a69 587fdab 5b7d78e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import time
import gradio as gr
from openai import OpenAI
def format_time(seconds_float):
total_seconds = int(round(seconds_float))
hours = total_seconds // 3600
remaining_seconds = total_seconds % 3600
minutes = remaining_seconds // 60
seconds = remaining_seconds % 60
if hours > 0:
return f"{hours}h {minutes}m {seconds}s"
elif minutes > 0:
return f"{minutes}m {seconds}s"
else:
return f"{seconds}s"
DESCRIPTION = '''
# Duplicate the space for free private inference.
## DeepSeek-R1 Distill Qwen-1.5B Demo
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
'''
CSS = """
.spinner {
animation: spin 1s linear infinite;
display: inline-block;
margin-right: 8px;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
.thinking-summary {
cursor: pointer;
padding: 8px;
background: #f5f5f5;
border-radius: 4px;
margin: 4px 0;
}
.thought-content {
padding: 10px;
background: #f8f9fa;
border-radius: 4px;
margin: 5px 0;
}
.thinking-container {
border-left: 3px solid #facc15;
padding-left: 10px;
margin: 8px 0;
background: #210c29;
}
details:not([open]) .thinking-container {
border-left-color: #290c15;
}
details {
border: 1px solid #e0e0e0 !important;
border-radius: 8px !important;
padding: 12px !important;
margin: 8px 0 !important;
transition: border-color 0.2s;
}
"""
client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")
def user(message, history):
return "", history + [[message, None]]
class ParserState:
__slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
def __init__(self):
self.answer = ""
self.thought = ""
self.in_think = False
self.start_time = 0
self.last_pos = 0
self.total_think_time = 0.0
def parse_response(text, state):
buffer = text[state.last_pos:]
state.last_pos = len(text)
while buffer:
if not state.in_think:
think_start = buffer.find('<think>')
if think_start != -1:
state.answer += buffer[:think_start]
state.in_think = True
state.start_time = time.perf_counter()
buffer = buffer[think_start + 7:]
else:
state.answer += buffer
break
else:
think_end = buffer.find('</think>')
if think_end != -1:
state.thought += buffer[:think_end]
# Calculate duration and accumulate
duration = time.perf_counter() - state.start_time
state.total_think_time += duration
state.in_think = False
buffer = buffer[think_end + 8:]
else:
state.thought += buffer
break
elapsed = time.perf_counter() - state.start_time if state.in_think else 0
return state, elapsed
def format_response(state, elapsed):
answer_part = state.answer.replace('<think>', '').replace('</think>', '')
collapsible = []
collapsed = "<details open>"
if state.thought or state.in_think:
if state.in_think:
# Ongoing think: total time = accumulated + current elapsed
total_elapsed = state.total_think_time + elapsed
formatted_time = format_time(total_elapsed)
status = f"🌀 Thinking for {formatted_time}"
else:
# Finished: show total accumulated time
formatted_time = format_time(state.total_think_time)
status = f"✅ Thought for {formatted_time}"
collapsed = "<details>"
collapsible.append(
f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
)
return collapsible, answer_part
def generate_response(history, temperature, top_p, max_tokens, active_gen):
messages = [{"role": "user", "content": history[-1][0]}]
full_response = ""
state = ParserState()
last_update = 0
try:
stream = client.chat.completions.create(
model="",
messages=messages,
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens,
stream=True
)
for chunk in stream:
if not active_gen[0]:
break
if chunk.choices[0].delta.content:
full_response += chunk.choices[0].delta.content
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
# Final update to ensure all content is parsed
state, elapsed = parse_response(full_response, state)
collapsible, answer_part = format_response(state, elapsed)
history[-1][1] = "\n\n".join(collapsible + [answer_part])
yield history
except Exception as e:
history[-1][1] = f"Error: {str(e)}"
yield history
finally:
active_gen[0] = False
with gr.Blocks(css=CSS) as demo:
gr.Markdown(DESCRIPTION)
active_gen = gr.State([False])
chatbot = gr.Chatbot(
elem_id="chatbot",
height=500,
show_label=False,
render_markdown=True
)
with gr.Row():
msg = gr.Textbox(
label="Message",
placeholder="Type your message...",
container=False,
scale=4
)
submit_btn = gr.Button("Send", variant='primary', scale=1)
with gr.Column(scale=2):
with gr.Row():
clear_btn = gr.Button("Clear", variant='secondary')
stop_btn = gr.Button("Stop", variant='stop')
with gr.Accordion("Parameters", open=False):
temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")
gr.Examples(
examples=[
["How many r's are in the word strawberry?"],
["Write 10 funny sentences that end in a fruit!"],
["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
],
inputs=msg,
label="Example Prompts"
)
submit_event = submit_btn.click(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
msg.submit(
user, [msg, chatbot], [msg, chatbot], queue=False
).then(
lambda: [True], outputs=active_gen
).then(
generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
)
stop_btn.click(
lambda: [False], None, active_gen, cancels=[submit_event]
)
clear_btn.click(lambda: None, None, chatbot, queue=False)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |