File size: 7,464 Bytes
587fdab
 
 
 
c50732d
 
 
 
 
 
 
 
 
 
 
 
 
 
587fdab
c50732d
1e58ec0
587fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b4a69
587fdab
 
45b4a69
587fdab
 
45b4a69
 
 
 
 
 
 
 
587fdab
 
 
 
 
 
 
 
 
c50732d
587fdab
 
 
 
 
 
c50732d
587fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c50732d
 
 
587fdab
 
 
 
 
 
 
 
 
 
 
 
45b4a69
587fdab
 
c50732d
 
 
 
 
 
 
 
 
45b4a69
587fdab
45b4a69
587fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c50732d
587fdab
 
c50732d
587fdab
 
c50732d
587fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b4a69
587fdab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b7d78e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import time
import gradio as gr
from openai import OpenAI

def format_time(seconds_float):
    total_seconds = int(round(seconds_float))
    hours = total_seconds // 3600
    remaining_seconds = total_seconds % 3600
    minutes = remaining_seconds // 60
    seconds = remaining_seconds % 60
    
    if hours > 0:
        return f"{hours}h {minutes}m {seconds}s"
    elif minutes > 0:
        return f"{minutes}m {seconds}s"
    else:
        return f"{seconds}s"

DESCRIPTION = '''
# Duplicate the space for free private inference.
## DeepSeek-R1 Distill Qwen-1.5B Demo
A reasoning model trained using RL (Reinforcement Learning) that demonstrates structured reasoning capabilities.
'''

CSS = """
.spinner {
    animation: spin 1s linear infinite;
    display: inline-block;
    margin-right: 8px;
}
@keyframes spin {
    from { transform: rotate(0deg); }
    to { transform: rotate(360deg); }
}
.thinking-summary {
    cursor: pointer;
    padding: 8px;
    background: #f5f5f5;
    border-radius: 4px;
    margin: 4px 0;
}
.thought-content {
    padding: 10px;
    background: #f8f9fa;
    border-radius: 4px;
    margin: 5px 0;
}
.thinking-container {
    border-left: 3px solid #facc15;
    padding-left: 10px;
    margin: 8px 0;
    background: #210c29;
}
details:not([open]) .thinking-container {
    border-left-color: #290c15;
}
details {
    border: 1px solid #e0e0e0 !important;
    border-radius: 8px !important;
    padding: 12px !important;
    margin: 8px 0 !important;
    transition: border-color 0.2s;
}
"""

client = OpenAI(base_url="http://localhost:8080/v1", api_key="no-key-required")

def user(message, history):
    return "", history + [[message, None]]

class ParserState:
    __slots__ = ['answer', 'thought', 'in_think', 'start_time', 'last_pos', 'total_think_time']
    def __init__(self):
        self.answer = ""
        self.thought = ""
        self.in_think = False
        self.start_time = 0
        self.last_pos = 0
        self.total_think_time = 0.0

def parse_response(text, state):
    buffer = text[state.last_pos:]
    state.last_pos = len(text)
    
    while buffer:
        if not state.in_think:
            think_start = buffer.find('<think>')
            if think_start != -1:
                state.answer += buffer[:think_start]
                state.in_think = True
                state.start_time = time.perf_counter()
                buffer = buffer[think_start + 7:]
            else:
                state.answer += buffer
                break
        else:
            think_end = buffer.find('</think>')
            if think_end != -1:
                state.thought += buffer[:think_end]
                # Calculate duration and accumulate
                duration = time.perf_counter() - state.start_time
                state.total_think_time += duration
                state.in_think = False
                buffer = buffer[think_end + 8:]
            else:
                state.thought += buffer
                break
    
    elapsed = time.perf_counter() - state.start_time if state.in_think else 0
    return state, elapsed

def format_response(state, elapsed):
    answer_part = state.answer.replace('<think>', '').replace('</think>', '')
    collapsible = []
    collapsed = "<details open>"

    if state.thought or state.in_think:
        if state.in_think:
            # Ongoing think: total time = accumulated + current elapsed
            total_elapsed = state.total_think_time + elapsed
            formatted_time = format_time(total_elapsed)
            status = f"🌀 Thinking for {formatted_time}"
        else:
            # Finished: show total accumulated time
            formatted_time = format_time(state.total_think_time)
            status = f"✅ Thought for {formatted_time}"
            collapsed = "<details>"
        collapsible.append(
            f"{collapsed}<summary>{status}</summary>\n\n<div class='thinking-container'>\n{state.thought}\n</div>\n</details>"
        )

    return collapsible, answer_part

def generate_response(history, temperature, top_p, max_tokens, active_gen):
    messages = [{"role": "user", "content": history[-1][0]}]
    full_response = ""
    state = ParserState()
    last_update = 0
    
    try:
        stream = client.chat.completions.create(
            model="",
            messages=messages,
            temperature=temperature,
            top_p=top_p,
            max_tokens=max_tokens,
            stream=True
        )
        
        for chunk in stream:
            if not active_gen[0]:
                break
            
            if chunk.choices[0].delta.content:
                full_response += chunk.choices[0].delta.content
                state, elapsed = parse_response(full_response, state)
                
                collapsible, answer_part = format_response(state, elapsed)
                history[-1][1] = "\n\n".join(collapsible + [answer_part])
                yield history
        
        # Final update to ensure all content is parsed
        state, elapsed = parse_response(full_response, state)
        collapsible, answer_part = format_response(state, elapsed)
        history[-1][1] = "\n\n".join(collapsible + [answer_part])
        yield history
        
    except Exception as e:
        history[-1][1] = f"Error: {str(e)}"
        yield history
    finally:
        active_gen[0] = False

with gr.Blocks(css=CSS) as demo:
    gr.Markdown(DESCRIPTION)
    active_gen = gr.State([False])
    
    chatbot = gr.Chatbot(
        elem_id="chatbot",
        height=500,
        show_label=False,
        render_markdown=True
    )

    with gr.Row():
        msg = gr.Textbox(
            label="Message",
            placeholder="Type your message...",
            container=False,
            scale=4
        )
        submit_btn = gr.Button("Send", variant='primary', scale=1)
    
    with gr.Column(scale=2):
        with gr.Row():
            clear_btn = gr.Button("Clear", variant='secondary')
            stop_btn = gr.Button("Stop", variant='stop')
        
        with gr.Accordion("Parameters", open=False):
            temperature = gr.Slider(minimum=0.1, maximum=1.5, value=0.6, label="Temperature")
            top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p")
            max_tokens = gr.Slider(minimum=2048, maximum=32768, value=4096, step=64, label="Max Tokens")

    gr.Examples(
        examples=[
            ["How many r's are in the word strawberry?"],
            ["Write 10 funny sentences that end in a fruit!"],
            ["Let’s play word chains! I’ll start: PIZZA. Your turn! Next word must start with… A!"]
        ],
        inputs=msg,
        label="Example Prompts"
    )
    
    submit_event = submit_btn.click(
        user, [msg, chatbot], [msg, chatbot], queue=False
    ).then(
        lambda: [True], outputs=active_gen
    ).then(
        generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
    )
    
    msg.submit(
        user, [msg, chatbot], [msg, chatbot], queue=False
    ).then(
        lambda: [True], outputs=active_gen
    ).then(
        generate_response, [chatbot, temperature, top_p, max_tokens, active_gen], chatbot
    )
    
    stop_btn.click(
        lambda: [False], None, active_gen, cancels=[submit_event]
    )
    
    clear_btn.click(lambda: None, None, chatbot, queue=False)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)