|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
model_name = "meta-llama/Llama-3.1-8B-Instruct" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
device_map=None, |
|
torch_dtype="float32" |
|
) |
|
|
|
|
|
def generate_response(prompt): |
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True) |
|
outputs = model.generate(inputs["input_ids"], max_length=200, num_beams=5, early_stopping=True) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_response, |
|
inputs="text", |
|
outputs="text", |
|
title="LLaMA 3.1 8B Instruct Text Generator (CPU)", |
|
description="Gib einen Text ein, und LLaMA 3.1 8B Instruct generiert eine Antwort." |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|