Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,171 @@
|
|
1 |
import gradio
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
gradio_interface.launch()
|
|
|
|
1 |
import gradio
|
2 |
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch
|
5 |
+
from torch_geometric.loader import DataLoader
|
6 |
+
|
7 |
+
import utils.clean_data as cd
|
8 |
+
import utils.shape_features as sf
|
9 |
+
import utils.node_features as nf
|
10 |
+
import utils.edge_features as ef
|
11 |
+
|
12 |
+
import json
|
13 |
+
|
14 |
+
node_model_path = 'utils/emb_model/Node_64.pt'
|
15 |
+
edge_model_path = 'utils/emb_model/Edge_64.pt'
|
16 |
+
|
17 |
+
|
18 |
+
class InfoGraph(nn.Module):
|
19 |
+
def __init__(self, hidden_dim, num_gc_layers, alpha=0.5, beta=1., gamma=.1):
|
20 |
+
super(InfoGraph, self).__init__()
|
21 |
+
|
22 |
+
self.alpha = alpha
|
23 |
+
self.beta = beta
|
24 |
+
self.gamma = gamma
|
25 |
+
self.prior = False
|
26 |
+
|
27 |
+
self.embedding_dim = mi_units = hidden_dim * num_gc_layers
|
28 |
+
self.encoder = Encoder(dataset_num_features, hidden_dim, num_gc_layers)
|
29 |
+
|
30 |
+
self.local_d = FF(self.embedding_dim)
|
31 |
+
self.global_d = FF(self.embedding_dim)
|
32 |
+
# self.local_d = MI1x1ConvNet(self.embedding_dim, mi_units)
|
33 |
+
# self.global_d = MIFCNet(self.embedding_dim, mi_units)
|
34 |
+
|
35 |
+
if self.prior:
|
36 |
+
self.prior_d = PriorDiscriminator(self.embedding_dim)
|
37 |
+
|
38 |
+
self.init_emb()
|
39 |
+
|
40 |
+
def init_emb(self):
|
41 |
+
initrange = -1.5 / self.embedding_dim
|
42 |
+
for m in self.modules():
|
43 |
+
if isinstance(m, nn.Linear):
|
44 |
+
torch.nn.init.xavier_uniform_(m.weight.data)
|
45 |
+
if m.bias is not None:
|
46 |
+
m.bias.data.fill_(0.0)
|
47 |
+
|
48 |
+
def forward(self, x, edge_index, batch, num_graphs):
|
49 |
+
# batch_size = data.num_graphs
|
50 |
+
if x is None:
|
51 |
+
x = torch.ones(batch.shape[0]).to(device)
|
52 |
+
|
53 |
+
y, M = self.encoder(x, edge_index, batch)
|
54 |
+
|
55 |
+
g_enc = self.global_d(y)
|
56 |
+
l_enc = self.local_d(M)
|
57 |
+
|
58 |
+
mode='fd'
|
59 |
+
measure='JSD'
|
60 |
+
local_global_loss = local_global_loss_(l_enc, g_enc, edge_index, batch, measure)
|
61 |
+
|
62 |
+
if self.prior:
|
63 |
+
prior = torch.rand_like(y)
|
64 |
+
term_a = torch.log(self.prior_d(prior)).mean()
|
65 |
+
term_b = torch.log(1.0 - self.prior_d(y)).mean()
|
66 |
+
PRIOR = - (term_a + term_b) * self.gamma
|
67 |
+
else:
|
68 |
+
PRIOR = 0
|
69 |
+
|
70 |
+
return local_global_loss + PRIOR
|
71 |
+
|
72 |
+
|
73 |
+
def outline_embedding(wkt, wall):
|
74 |
+
wall_f, wkt_f = cd.read_wall_wkt(wall, wkt)
|
75 |
+
apa_wall, apa_geo = cd.clean_geometry(wall_f, wkt_f)
|
76 |
+
|
77 |
+
apa_geo = apa_geo
|
78 |
+
apa_line = apa_geo.boundary
|
79 |
+
|
80 |
+
apa_wall_O = cd.exterior_wall(apa_line, apa_wall)
|
81 |
+
apa_coor = cd.geo_coor(apa_geo)
|
82 |
+
|
83 |
+
xarr4cv, yarr4cv = apa_geo.exterior.coords.xy
|
84 |
+
x4cv = xarr4cv.tolist()
|
85 |
+
y4cv = yarr4cv.tolist()
|
86 |
+
|
87 |
+
scale = 100000
|
88 |
+
xmin_abs = abs(min(x4cv))
|
89 |
+
ymin_abs = abs(min(y4cv))
|
90 |
+
|
91 |
+
p_4_cv = cd.points4cv(x4cv, y4cv, xmin_abs, ymin_abs, scale)
|
92 |
+
|
93 |
+
grid_points = cd.gridpoints(apa_geo, 1)
|
94 |
+
|
95 |
+
Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio = sf.wall_direction_ratio(apa_line, apa_wall)
|
96 |
+
Perimeter = sf.apartment_perimeter(apa_geo)
|
97 |
+
Area = sf.apartment_area(apa_geo)
|
98 |
+
BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y = sf.boundingbox_features(apa_geo)
|
99 |
+
Max_diameter = sf.max_diameter(apa_geo)
|
100 |
+
Fractality = sf.fractality(apa_geo)
|
101 |
+
Circularity = sf.circularity(apa_geo)
|
102 |
+
Outer_radius = sf.outer_radius(p_4_cv, xmin_abs, ymin_abs, scale)
|
103 |
+
Inner_radius = sf.inner_radius(apa_geo, apa_line)
|
104 |
+
Dist_mean, Dist_sigma, Roundness = sf.roundness_features(apa_line)
|
105 |
+
Compactness = sf.compactness(apa_geo)
|
106 |
+
Equivalent_diameter = sf.equivalent_diameter(apa_geo)
|
107 |
+
Shape_membership_index = sf.shape_membership_index(apa_line)
|
108 |
+
Convexity, Hull_geo = sf.convexity(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
|
109 |
+
Rectangularity, Rect_phi, Rect_width, Rect_height = sf.rectangle_features(p_4_cv, apa_geo, xmin_abs, ymin_abs, scale)
|
110 |
+
Squareness = sf.squareness(apa_geo)
|
111 |
+
Moment_index = sf.moment_index(apa_geo, Convexity, Compactness)
|
112 |
+
nDetour_index = sf.ndetour_index(apa_geo, Hull_geo)
|
113 |
+
nCohesion_index = sf.ncohesion_index(apa_geo, grid_points)
|
114 |
+
nProximity_index, nSpin_index = sf.nproximity_nspin_index(apa_geo, grid_points)
|
115 |
+
nExchange_index = sf.nexchange_index(apa_geo)
|
116 |
+
nPerimeter_index = sf.nperimeter_index(apa_geo)
|
117 |
+
nDepth_index = sf.ndepth_index(apa_geo, apa_line, grid_points)
|
118 |
+
nGirth_index = sf.ngirth_index(apa_geo, Inner_radius)
|
119 |
+
nRange_index = sf.nrange_index(apa_geo, Outer_radius)
|
120 |
+
nTraversal_index = sf.ntraversal_index(apa_geo, apa_line)
|
121 |
+
|
122 |
+
shape = [Dir_S_longestedge, Dir_N_longestedge, Dir_W_longestedge, Dir_E_longestedge, Dir_S_max, Dir_N_max, Dir_W_max, Dir_E_max, Facade_length, Facade_ratio,
|
123 |
+
Perimeter, Area,
|
124 |
+
BBox_width_x, BBox_height_y, Aspect_ratio, Extent, ULC_x, ULC_y, LRC_x, LRC_y,
|
125 |
+
Max_diameter, Fractality, Circularity, Outer_radius, Inner_radius,
|
126 |
+
Dist_mean, Dist_sigma, Roundness,
|
127 |
+
Compactness, Equivalent_diameter, Shape_membership_index, Convexity,
|
128 |
+
Rectangularity, Rect_phi, Rect_width, Rect_height,
|
129 |
+
Squareness, Moment_index, nDetour_index, nCohesion_index,
|
130 |
+
nProximity_index, nExchange_index, nSpin_index, nPerimeter_index,
|
131 |
+
nDepth_index, nGirth_index, nRange_index, nTraversal_index]
|
132 |
+
shape = [float(i) for i in shape]
|
133 |
+
|
134 |
+
|
135 |
+
node_graph = nf.node_graph(apa_coor, apa_geo)
|
136 |
+
node_model = torch.load(node_model_path)
|
137 |
+
node_model.eval()
|
138 |
+
|
139 |
+
node_dataloader = DataLoader(node_graph, batch_size=1)
|
140 |
+
node_emb = node_model.encoder.get_embeddings(node_dataloader)
|
141 |
+
node = node_emb[0].tolist()
|
142 |
+
|
143 |
+
|
144 |
+
edge_graph = ef.edge_graph(apa_line, apa_wall)
|
145 |
+
edge_model = torch.load(edge_model_path)
|
146 |
+
edge_model.eval()
|
147 |
+
|
148 |
+
edge_dataloader = DataLoader(edge_graph, batch_size=1)
|
149 |
+
edge_emb = edge_model.encoder.get_embeddings(edge_dataloader)
|
150 |
+
edge = edge_emb[0].tolist()
|
151 |
+
|
152 |
+
json = {"shape": shape,
|
153 |
+
"node": node,
|
154 |
+
"edge": edge}
|
155 |
+
|
156 |
+
|
157 |
+
return json
|
158 |
+
|
159 |
+
|
160 |
+
|
161 |
+
gradio_interface = gradio.Interface(fn=outline_embedding,
|
162 |
+
inputs = [gradio.Textbox(type="text", label="wkt", show_legend=True),
|
163 |
+
gradio.Textbox(type="text", label="wall", show_legend=True),
|
164 |
+
gradio.Textbox(type="text", label="highway", show_legend=True),
|
165 |
+
gradio.Textbox(type="text", label="primary", show_legend=True),
|
166 |
+
gradio.Textbox(type="text", label="railway", show_legend=True)],
|
167 |
+
outputs = "json",
|
168 |
+
title="outline embedding")
|
169 |
+
|
170 |
gradio_interface.launch()
|
171 |
+
|